Achieving the Paris Climate Agreement Goals : : Global and Regional 100% Renewable Energy Scenarios with Non-Energy GHG Pathways for +1. 5°C And +2°C.

Saved in:
Bibliographic Details
:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2019.
{copy}2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (535 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Dedication
  • Climate Model: Foreword
  • Contact Information
  • Executive Summary
  • Acknowledgement
  • Contents
  • List of Figures
  • List of Tables
  • Chapter 1: Introduction
  • References
  • Chapter 2: State of Research
  • 2.1 Scientific Status Quo of Climate Change Research
  • 2.1.1 Basics of Climate Change and Radiative Forcing
  • 2.1.1.1 Anthropogenic Contribution
  • 2.1.1.2 Carbon Budget and Future Warming
  • 2.1.2 Carbon Budgets for 1.5 °C and 2.0 °C Warming
  • 2.2 Development of Energy Markets-Past and Present
  • 2.2.1 Global Trends in Renewable Energy in 2018
  • 2.2.1.1 Trends in the Renewable Power Sector
  • 2.2.1.2 Heating and Cooling
  • 2.2.1.3 Transport
  • References
  • Chapter 3: Methodology
  • 3.1 100% Renewable Energy-Modelling Approach
  • 3.2 Global Mapping-Renewable Energy Potential in Space-Constrained Environments: [R]E-SPACE
  • 3.3 Transport Energy Model-TRAEM
  • 3.3.1 Transport Model Structure
  • 3.3.2 Transport Data
  • 3.3.3 Transport Model Output
  • 3.4 Energy System Model (EM)
  • 3.5 [R]E 24/7 (UTS-ISF)
  • 3.5.1 [R]E 24/7-Model Structure
  • 3.5.2 Development and Calculation of Load Curves
  • 3.5.3 Load Curve Calculation for Households
  • 3.5.4 Load Curve Calculation for Business and Industry
  • 3.5.5 Load Distribution by Cluster
  • 3.5.6 The [R]E 24/7 Dispatch Module
  • 3.5.7 Meteorological Data
  • 3.5.7.1 Solar and Wind Time Series
  • 3.5.8 Interconnection Capacities
  • 3.6 Employment Modelling (UTS-ISF)
  • 3.6.1 Quantitative Employment Calculation
  • 3.6.2 Occupational Employment Modelling
  • 3.7 Material and Metal Resources Analysis (UTS-ISF)
  • 3.7.1 Methodology-Material and Metal Resources Analysis
  • 3.8 Climate Model
  • 3.8.1 Deriving Non-CO2 GHG Pathways
  • 3.8.1.1 Regional Definitions
  • 3.8.1.2 Harmonization: Emission Category Adjustments
  • 3.8.1.3 A New Quantile Regression Method for Non-CO2 Gases.
  • 3.8.1.4 'Pseudo' Fossil and Industrial CO2 Extensions Beyond 2050
  • 3.8.1.5 Land-Use Assumptions
  • 3.8.2 Model for the Assessment of GHG-Induced Climate Change
  • References
  • Chapter 4: Mitigation Scenarios for Non-energy GHG
  • 4.1 Land-Use CO2 emissions
  • 4.1.1 Other GHG and Aerosol Emissions
  • References
  • Chapter 5: Main Assumptions for Energy Pathways
  • 5.1 Scenario Definition
  • 5.1.1 The 5.0 °C Scenario (Reference Scenario)
  • 5.1.2 The 2.0 °C Scenario
  • 5.1.3 The 1.5 °C Scenario
  • 5.2 Scenario World Regions and Clusters
  • 5.2.1 OECD North America
  • 5.2.2 Latin America
  • 5.2.3 OECD Europe
  • 5.2.4 Eastern Europe/Eurasia
  • 5.2.5 The Middle East
  • 5.2.6 Africa
  • 5.2.7 Non-OECD Asia
  • 5.2.8 India
  • 5.2.9 China
  • 5.2.10 OECD Pacific
  • 5.3 Key Assumptions for Scenarios
  • 5.3.1 Population Growth
  • 5.3.2 GDP Development
  • 5.3.3 Technology Cost Projections
  • 5.3.3.1 Power and CHP Technologies
  • 5.3.3.2 Heating Technologies
  • 5.3.4 Fuel Cost Projections
  • 5.3.4.1 Fossil Fuels
  • 5.3.4.2 Biomass Prices
  • 5.3.5 CO2 Costs
  • 5.4 Energy Scenario Narratives and Assumptions for World Regions
  • 5.4.1 Efficiency and Energy Intensities
  • 5.4.1.1 Industrial Electricity Demand
  • 5.4.1.2 Demand for Fuel to Produce Heat in the Industry Sector
  • 5.4.1.3 Electricity Demand in the 'Residential and Other' Sector
  • 5.4.1.4 Fuel Demand for Heat in the 'Residential and Other' Sector
  • 5.4.1.5 Resulting Energy Intensities by Region
  • 5.4.2 RES Deployment for Electricity Generation
  • 5.4.3 RES Deployment for Heat Generation
  • 5.4.4 Co-generation of Heat and Power and District Heating
  • 5.4.5 Other Assumptions for Stationary Processes
  • References
  • Chapter 6: Transport Transition Concepts
  • 6.1 Introduction
  • 6.2 Global Transport Picture in 2015
  • 6.3 Measures to Reduce and Decarbonise Transport Energy Consumption.
  • 6.3.1 Powertrain Electrification
  • 6.3.1.1 The 5.0 °C Scenario
  • 6.3.1.2 The 2.0 °C Scenario
  • 6.3.1.3 The 1.5 °C Scenario
  • 6.3.2 Mode-Specific Efficiency and Improvements Over Time
  • 6.3.3 Road Transport
  • 6.3.3.1 Passenger Cars
  • 6.3.3.2 Light and Heavy Freight Vehicles
  • 6.3.3.3 Buses
  • 6.3.3.4 Two- and Three-Wheel Vehicles
  • 6.3.3.5 Rail Transport
  • 6.3.3.6 Water and Air Transport
  • 6.3.4 Replacement of Fossil Fuels by Biofuels and Synfuels
  • 6.3.5 Operational Improvements and Novel Service Concepts
  • 6.3.5.1 Passenger Transport
  • 6.3.5.2 Freight Transport
  • 6.4 Transport Performance
  • 6.4.1 Passenger Transport Modes
  • 6.4.2 Freight Transport Modes
  • References
  • Chapter 7: Renewable Energy Resource Assessment
  • 7.1 Global Renewable Energy Potentials
  • 7.1.1 Bioenergy
  • 7.2 Economic Renewable Energy Potential in Space-Constrained Environments
  • 7.2.1 Constrains for Utility-Scale Solar and Wind Power Plants
  • 7.2.2 Mapping Solar and Wind Potential
  • References
  • Chapter 8: Energy Scenario Results
  • 8.1 Global: Long-Term Energy Pathways
  • 8.1.1 Global: Projection of Overall Energy Intensity
  • 8.1.2 Global: Final Energy Demand by Sector (Excluding Bunkers)
  • 8.1.3 Global: Electricity Generation
  • 8.1.4 Global: Future Costs of Electricity Generation
  • 8.1.5 Global: Future Investments in the Power Sector
  • 8.1.6 Global: Energy Supply for Heating
  • 8.1.7 Global: Future Investments in the Heating Sector
  • 8.1.8 Global: Transport
  • 8.1.9 Global: Development of CO2 Emissions
  • 8.1.10 Global: Primary Energy Consumption
  • 8.2 Global: Bunker Fuels
  • 8.3 Global: Utilization of Solar and Wind Potential
  • 8.4 Global: Power Sector Analysis
  • 8.4.1 Global: Development of Power Plant Capacities
  • 8.4.2 Global: Utilization of Power-Generation Capacities
  • 8.4.3 Global: Development of Load, Generation, and Residual Load.
  • 8.4.4 Global System-Relevant Technologies-Storage and Dispatch
  • 8.4.5 Global: Required Storage Capacities for the Stationary Power Sector
  • 8.5 OECD North America
  • 8.5.1 OECD North America: Long-Term Energy Pathways
  • 8.5.1.1 OECD North America: Final Energy Demand by Sector
  • 8.5.1.2 OECD North America: Electricity Generation
  • 8.5.1.3 OECD North America: Future Costs of Electricity Generation
  • 8.5.1.4 OECD North America: Future Investments in the Power Sector
  • 8.5.1.5 OECD North America: Energy Supply for Heating
  • 8.5.1.6 OECD North America: Future Investments in the Heating Sector
  • 8.5.1.7 OECD North America: Transport
  • 8.5.1.8 OECD North America: Development of CO2 Emissions
  • 8.5.1.9 OECD North America: Primary Energy Consumption
  • 8.5.2 Regional Results: Power Sector Analysis
  • 8.5.3 OECD North America: Power Sector Analysis
  • 8.5.3.1 OECD North America: Development of Power Plant Capacities
  • 8.5.3.2 OECD North America: Utilization of Power-Generation Capacities
  • 8.5.3.3 OECD North America: Development of Load, Generation, and Residual Load
  • 8.6 Latin America
  • 8.6.1 Latin America: Long-Term Energy Pathways
  • 8.6.1.1 Latin America: Final Energy Demand by Sector
  • 8.6.1.2 Latin America: Electricity Generation
  • 8.6.1.3 Latin America: Future Costs of Electricity Generation
  • 8.6.1.4 Latin America: Future Investments in the Power Sector
  • 8.6.1.5 Latin America: Energy Supply for Heating
  • 8.6.1.6 Latin America: Future Investments in the Heating Sector
  • 8.6.1.7 Latin America: Transport
  • 8.6.1.8 Latin America: Development of CO2 Emissions
  • 8.6.1.9 Latin America: Primary Energy Consumption
  • 8.6.2 Latin America: Power Sector Analysis
  • 8.6.2.1 Latin America: Development of Power Plant Capacities
  • 8.6.2.2 Latin America: Utilization of Power-Generation Capacities.
  • 8.6.2.3 Latin America: Development of Load, Generation and Residual Load
  • 8.7 OECD Europe
  • 8.7.1 OECD Europe: Long-Term Energy Pathways
  • 8.7.1.1 OECD Europe: Final Energy Demand by Sector
  • 8.7.1.2 OECD Europe: Electricity Generation
  • 8.7.1.3 OECD Europe: Future Costs of Electricity Generation
  • 8.7.1.4 OECD Europe: Future Investments in the Power Sector
  • 8.7.1.5 OECD Europe: Energy Supply for Heating
  • 8.7.1.6 OECD Europe: Future Investments in the Heating Sector
  • 8.7.1.7 OECD Europe: Transport
  • 8.7.1.8 OECD Europe: Development of CO2 Emissions
  • 8.7.1.9 OECD Europe: Primary Energy Consumption
  • 8.7.2 OECD Europe: Power Sector Analysis
  • 8.7.2.1 OECD Europe: Development of Power Plant Capacities
  • 8.7.2.2 OECD Europe: Utilization of Power-Generation Capacities
  • 8.7.2.3 OECD Europe: Development of Load, Generation, and Residual Load
  • 8.8 Africa
  • 8.8.1 Africa: Long-Term Energy Pathways
  • 8.8.1.1 Africa: Final Energy Demand by Sector
  • 8.8.1.2 Africa: Electricity Generation
  • 8.8.1.3 Africa: Future Costs of Electricity Generation
  • 8.8.1.4 Africa: Future Investments in the Power Sector
  • 8.8.1.5 Africa: Energy Supply for Heating
  • 8.8.1.6 Africa: Future Investments in the Heating Sector
  • 8.8.1.7 Africa: Transport
  • 8.8.1.8 Africa: Development of CO2 Emissions
  • 8.8.1.9 Africa: Primary Energy Consumption
  • 8.8.2 Africa: Power Sector Analysis
  • 8.8.2.1 Africa: Development of Power Plant Capacities
  • 8.8.2.2 Africa: Utilization of Power-Generation Capacities
  • 8.8.2.3 Africa: Development of Load, Generation, and Residual Load
  • 8.9 The Middle East
  • 8.9.1 The Middle East: Long-Term Energy Pathways
  • 8.9.1.1 The Middle East: Final Energy Demand by Sector
  • 8.9.1.2 The Middle East: Electricity Generation
  • 8.9.1.3 The Middle East: Future Costs of Electricity Generation.
  • 8.9.1.4 The Middle East: Future Investments in the Power Sector.