Agricultural Implications of the Fukushima Nuclear Accident (III) : : After 7 Years.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (250 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Contents
  • Chapter 1: An Overview of Our Research
  • 1.1 General Features of the Fallout
  • 1.2 Radioactivity Measurement
  • 1.3 A Brief Summary of Our Findings
  • 1.3.1 Soil
  • 1.3.1.1 Vertical Migration of Radiocesium
  • 1.3.1.2 137Cs Adsorption Site
  • 1.3.1.3 133Cs and 137Cs
  • 1.3.2 Plants
  • 1.3.2.1 Rice and Soybean
  • 1.3.2.2 Fruit Trees
  • 1.3.3 Forests and Animals
  • 1.3.3.1 Forests
  • 1.3.3.2 Animals
  • 1.4 Decontamination Trial
  • 1.5 Conclusion
  • References
  • Chapter 2: Transfer of Radiocesium to Rice in Contaminated Paddy Fields
  • 2.1 Radiocesium in the Paddy Field Ecosystem
  • 2.2 Transfer of Radiocesium to Rice in 2011 (After the Accident)
  • 2.3 Experimental Cultivation in 2012
  • 2.4 The Experimental Cultivation in Oguni, Date City
  • 2.5 No Decrease of Radiocesium in Rice
  • 2.6 Summary of the Experiments Performed in Oguni, Date City
  • References
  • Chapter 3: Cesium Translocation in Rice
  • 3.1 Introduction
  • 3.2 Materials and Methods
  • 3.2.1 137Cs Experiment to Grow the Three Rice Cultivars Hydroponically in a Growth Chamber
  • 3.2.2 Paddy Field Experiment to Observe 133Cs Distribution in Grains
  • 3.2.3 137Cs Tracer Experiment Using Juvenile-Phase Rice
  • 3.3 Results and Discussion
  • References
  • Chapter 4: Absorption of Radioceasium in Soybean
  • 4.1 Introduction
  • 4.2 The Concentration Distribution of Cs in Soybean Seeds
  • 4.3 Potassium Behavior in the Soil with Low Effectiveness of Potassium Application
  • 4.4 The Effect of Nitrogen Fertilization on RCs Absorption in Soybean
  • References
  • Chapter 5: An Observational Study of Pigs Exposed to Radiation
  • 5.1 Introduction
  • 5.2 Methods and Material
  • 5.3 Results
  • 5.3.1 Exposure Levels in Pigs
  • 5.3.2 Reproductive Performance
  • 5.3.3 Hematology Analyses and Biochemical Indices
  • 5.4 Discussion and Conclusion
  • References.
  • Chapter 6: A Composting System to Decompose Radiocesium Contaminated Baled Grass Silage
  • 6.1 Composting Organic Waste Contaminated with Radioactive Cesium
  • 6.2 Reduction in the Volume and Weight of Silage Contaminated with Radiocesium by an Aerobic, High-Temperature Composting System
  • 6.3 Dynamics of Radiocesium in Crops Grown with Radioactive Contaminated Silage Compost
  • 6.4 Conclusion
  • References
  • Chapter 7: Weathered Biotite: A Key Material of Radioactive Contamination in Fukushima
  • 7.1 Introduction
  • 7.2 Speciation of the Radioactive Particles in the Soil of Fukushima
  • 7.3 Mineralogical Characterization of Weathered Biotite (WB)
  • 7.3.1 Sorption and Desorption Behavior of Cs to WB
  • 7.4 Conclusions
  • References
  • Chapter 8: Radiocesium Accumulation in Koshiabura (Eleutherococcus sciadophylloides) and Other Wild Vegetables in Fukushima Prefecture
  • 8.1 Monitoring and Examination of Agricultural Products
  • 8.2 Wild Vegetables and Local People
  • 8.3 Reasons for High Radiocesium Concentration in Wild Vegetables
  • 8.4 Radiocesium Concentration of Each Category of Wild Vegetables
  • 8.5 The Seasonal Transition of Radiocesium Concentration in Koshiabura
  • 8.6 Conclusion
  • References
  • Chapter 9: The Transition of Radiocesium in Peach Trees After the Fukushima Nuclear Accident
  • 9.1 Introduction
  • 9.2 The Year-Over-Year Transition of Radiocesium in Fruit
  • 9.3 The Year-Over-Year Transition of Radiocesium in Trees
  • 9.4 The Current Investigation
  • References
  • Chapter 10: Application of the Artificial Annual Environmental Cycle and Dormancy-Induced Suppression of Cesium Uptake in Poplar
  • 10.1 Introduction
  • 10.2 Application of the Artificial Annual Environmental Cycle to Poplar
  • 10.3 Measurement of 137Cs and 42K Distributions in Poplar
  • 10.4 Expression of Potassium Influx Transporters in Poplar Root.
  • 10.5 Perspectives in Cs+ Transporter Research
  • References
  • Chapter 11: Radiocesium Contamination in Forests and the Current Situation of Growing Oak Trees for Mushroom Logs
  • 11.1 Introduction
  • 11.2 Objective and Research Field
  • 11.3 Field Investigation
  • 11.3.1 Sample Collection
  • 11.3.2 Property of the Soil
  • 11.3.3 137Cs Concentrations in Above Ground Parts
  • 11.3.4 Seasonal Variation in Leaf 137Cs Concentration
  • 11.4 Comparison Between 137Cs Distribution and 133Cs Distribution in Wood, Bark, and New Branches
  • 11.5 Extra Field Investigation to Evaluate the Impact of Field Use History on the Current 137Cs Content in Trees
  • 11.6 137Cs Tracer Experiment Using Hydroponically Grown Young Oak Seedlings
  • 11.7 Conclusion
  • References
  • Chapter 12: Radiocesium Dynamics in Wild Mushrooms During the First Five Years After the Fukushima Accident
  • 12.1 Introduction
  • 12.2 Research Sites and Sampling
  • 12.3 Gamma Ray Air Dose Rate at the Mushroom Collection Sites (Fig. 12.4)
  • 12.4 Dynamics of Radiocesium in Each of the University of Tokyo Forests (Fig. 12.5)
  • 12.4.1 Litter and Soil Layer
  • 12.4.2 Mushrooms
  • 12.5 Dynamics of Radiocesium in the Same Sampling Sites (Figs. 12.6 and 12.7)
  • 12.6 The Relationship Between Radiocesium Contamination of Mycorrhizal Mushrooms and Soils (Fig. 12.8)
  • 12.7 Possible Mechanism Determining Radiocesium Content - The Relationship Between 137Cs and 40K (Figs. 12.9 and 12.10)
  • 12.8 Features of Radioactive Contamination with Different Date of Fallout (Fig. 12.11)
  • 12.9 Conclusion
  • References
  • Chapter 13: The Spatial Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North Fukushima After the Nuclear Power Station Accident
  • 13.1 Introduction
  • 13.2 Material and Method
  • 13.2.1 Study Site
  • 13.2.2 Sampling and 137Cs Concentration Measurements.
  • 13.2.3 Estimation of 137Cs Accumulation and Its Environmental Half-Life
  • 13.3 Results
  • 13.3.1 Annual Changes of 137Cs Accumulation in Litter Layers, Soils and Trees
  • 13.3.2 Changes in 137Cs Accumulation in Each Compartment of the Catchment
  • 13.4 Discussion
  • 13.4.1 Redistribution of the 137Cs Accumulation
  • 13.4.2 Catchment-Scale Environmental Half-Life of the 137Cs Accumulation
  • 13.5 Perspective
  • References
  • Chapter 14: Parallel Measurement of Ambient and Individual External Radiation in Iitate Village, Fukushima
  • 14.1 Introduction
  • 14.2 Methods
  • 14.3 Results and Discussion
  • 14.4 Conclusion
  • References
  • Chapter 15: Mobility of Fallout Radiocesium Depending on the Land Use in Kasumigaura Basin
  • 15.1 Introduction
  • 15.2 Methods
  • 15.2.1 Characteristics of the Study Area
  • 15.2.2 Measurement Apparatus of Deposited Radiocesium per Unit Area (kBq M−2)
  • 15.2.3 Measurement and Analysis of Radioactivity
  • 15.3 Results and Discussion
  • 15.4 Conclusions
  • References
  • Chapter 16: Challenges of Agricultural Land Remediation and Renewal of Agriculture in Iitate Village by a Collaboration Between Researchers and a Non-profit Organization
  • 16.1 Introduction
  • 16.2 Collaboration Between Researchers and NPO
  • 16.2.1 Authorized NPO "Resurrection of Fukushima" (Resurrection of Fukushima 2017)
  • 16.2.2 Fukushima Reconstruction Agricultural Engineering Group (Fukushima Reconstruction Agricultural Engineering Meeting 2017)
  • 16.2.3 Campus Group "Madei"
  • 16.2.4 Rehabilitation Support Project (University of Tokyo Agricultural Life Science Graduate School of Grants-in-Aids Rehabilitation Support Project 2017) of the Graduate School of Agriculture and Life Sciences (GSALS), The University of Tokyo
  • 16.3 Development of Agricultural Land Decontamination Method by Farmers Themselves (Mizoguchi 2013).
  • 16.3.1 Muddy Water Flushing Out Method with a Hand Weed Machine
  • 16.3.2 Muddy Water Flushing Out Method with a Tractor (Mizoguchi 2014b)
  • 16.3.3 Burial Method of Contaminated Soil-Madei Method (Mizoguchi et al. 2013)
  • 16.3.4 Monitoring of Buried Contaminated Soil (Mizoguchi et al. 2015)
  • 16.3.5 Environmental Monitoring in the Iitate Village (Mizoguchi 2013b)
  • 16.4 The Current Status of Agricultural Land After Decontamination
  • 16.5 Rural Reconstruction Scenario
  • 16.5.1 Creation of a New Japanese Agriculture Model (Mizoguchi 2015b)
  • 16.5.2 Human Resource Development
  • 16.6 Conclusion
  • References
  • Chapter 17: Radiocesium Contamination on a University Campus and in Forests in Kashiwa City, Chiba Prefecture, a Suburb of Metropolitan Tokyo
  • 17.1 Introduction
  • 17.2 Study Area and Methods
  • 17.3 Air Dose Rate and Soil Contamination in 2011 in Relation to the Land Cover
  • 17.4 Radiocesium Concentrations in Biological Samples
  • 17.5 Radiocesium Contamination in Forest Trees and Soil in the Winter of 2011
  • 17.6 Forest Type, Air Dose Rate, and Soil Contamination in the UTokyo Campus Forest in 2013
  • 17.7 Decontamination Experiment in a Nursery Lawn
  • 17.8 Change in Radiocesium Distribution in Deciduous Forest Soil in Oaota in 2013-2015
  • 17.9 Conclusion
  • References
  • Chapter 18: The State of Fisheries and Marine Species in Fukushima: Six Years After the 2011 Disaster
  • 18.1 Introduction
  • 18.2 Declining Level of Radiocesium Contained in Fish and Fishery Products
  • 18.3 Development of Biological Studies on Fish and Radioactive Substances
  • 18.4 Limited Resumption of Fishing in Fukushima Waters
  • 18.5 Weak Consumer Confidence and Risk-Averse Distributers
  • 18.6 Increased Abundance of Key Target Fish Species in Fukushima
  • 18.7 Conclusion
  • References
  • Chapter 19: Visualization of Ion Transport in Plants.
  • 19.1 Introduction.