Agricultural Implications of the Fukushima Nuclear Accident (III) : : After 7 Years.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2019.
©2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (250 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 5005660336
ctrlnum (MiAaPQ)5005660336
(Au-PeEL)EBL5660336
(OCoLC)1084654008
collection bib_alma
record_format marc
spelling Nakanishi, Tomoko M.
Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2019.
©2019.
1 online resource (250 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Foreword -- Preface -- Contents -- Chapter 1: An Overview of Our Research -- 1.1 General Features of the Fallout -- 1.2 Radioactivity Measurement -- 1.3 A Brief Summary of Our Findings -- 1.3.1 Soil -- 1.3.1.1 Vertical Migration of Radiocesium -- 1.3.1.2 137Cs Adsorption Site -- 1.3.1.3 133Cs and 137Cs -- 1.3.2 Plants -- 1.3.2.1 Rice and Soybean -- 1.3.2.2 Fruit Trees -- 1.3.3 Forests and Animals -- 1.3.3.1 Forests -- 1.3.3.2 Animals -- 1.4 Decontamination Trial -- 1.5 Conclusion -- References -- Chapter 2: Transfer of Radiocesium to Rice in Contaminated Paddy Fields -- 2.1 Radiocesium in the Paddy Field Ecosystem -- 2.2 Transfer of Radiocesium to Rice in 2011 (After the Accident) -- 2.3 Experimental Cultivation in 2012 -- 2.4 The Experimental Cultivation in Oguni, Date City -- 2.5 No Decrease of Radiocesium in Rice -- 2.6 Summary of the Experiments Performed in Oguni, Date City -- References -- Chapter 3: Cesium Translocation in Rice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 137Cs Experiment to Grow the Three Rice Cultivars Hydroponically in a Growth Chamber -- 3.2.2 Paddy Field Experiment to Observe 133Cs Distribution in Grains -- 3.2.3 137Cs Tracer Experiment Using Juvenile-Phase Rice -- 3.3 Results and Discussion -- References -- Chapter 4: Absorption of Radioceasium in Soybean -- 4.1 Introduction -- 4.2 The Concentration Distribution of Cs in Soybean Seeds -- 4.3 Potassium Behavior in the Soil with Low Effectiveness of Potassium Application -- 4.4 The Effect of Nitrogen Fertilization on RCs Absorption in Soybean -- References -- Chapter 5: An Observational Study of Pigs Exposed to Radiation -- 5.1 Introduction -- 5.2 Methods and Material -- 5.3 Results -- 5.3.1 Exposure Levels in Pigs -- 5.3.2 Reproductive Performance -- 5.3.3 Hematology Analyses and Biochemical Indices -- 5.4 Discussion and Conclusion -- References.
Chapter 6: A Composting System to Decompose Radiocesium Contaminated Baled Grass Silage -- 6.1 Composting Organic Waste Contaminated with Radioactive Cesium -- 6.2 Reduction in the Volume and Weight of Silage Contaminated with Radiocesium by an Aerobic, High-Temperature Composting System -- 6.3 Dynamics of Radiocesium in Crops Grown with Radioactive Contaminated Silage Compost -- 6.4 Conclusion -- References -- Chapter 7: Weathered Biotite: A Key Material of Radioactive Contamination in Fukushima -- 7.1 Introduction -- 7.2 Speciation of the Radioactive Particles in the Soil of Fukushima -- 7.3 Mineralogical Characterization of Weathered Biotite (WB) -- 7.3.1 Sorption and Desorption Behavior of Cs to WB -- 7.4 Conclusions -- References -- Chapter 8: Radiocesium Accumulation in Koshiabura (Eleutherococcus sciadophylloides) and Other Wild Vegetables in Fukushima Prefecture -- 8.1 Monitoring and Examination of Agricultural Products -- 8.2 Wild Vegetables and Local People -- 8.3 Reasons for High Radiocesium Concentration in Wild Vegetables -- 8.4 Radiocesium Concentration of Each Category of Wild Vegetables -- 8.5 The Seasonal Transition of Radiocesium Concentration in Koshiabura -- 8.6 Conclusion -- References -- Chapter 9: The Transition of Radiocesium in Peach Trees After the Fukushima Nuclear Accident -- 9.1 Introduction -- 9.2 The Year-Over-Year Transition of Radiocesium in Fruit -- 9.3 The Year-Over-Year Transition of Radiocesium in Trees -- 9.4 The Current Investigation -- References -- Chapter 10: Application of the Artificial Annual Environmental Cycle and Dormancy-Induced Suppression of Cesium Uptake in Poplar -- 10.1 Introduction -- 10.2 Application of the Artificial Annual Environmental Cycle to Poplar -- 10.3 Measurement of 137Cs and 42K Distributions in Poplar -- 10.4 Expression of Potassium Influx Transporters in Poplar Root.
10.5 Perspectives in Cs+ Transporter Research -- References -- Chapter 11: Radiocesium Contamination in Forests and the Current Situation of Growing Oak Trees for Mushroom Logs -- 11.1 Introduction -- 11.2 Objective and Research Field -- 11.3 Field Investigation -- 11.3.1 Sample Collection -- 11.3.2 Property of the Soil -- 11.3.3 137Cs Concentrations in Above Ground Parts -- 11.3.4 Seasonal Variation in Leaf 137Cs Concentration -- 11.4 Comparison Between 137Cs Distribution and 133Cs Distribution in Wood, Bark, and New Branches -- 11.5 Extra Field Investigation to Evaluate the Impact of Field Use History on the Current 137Cs Content in Trees -- 11.6 137Cs Tracer Experiment Using Hydroponically Grown Young Oak Seedlings -- 11.7 Conclusion -- References -- Chapter 12: Radiocesium Dynamics in Wild Mushrooms During the First Five Years After the Fukushima Accident -- 12.1 Introduction -- 12.2 Research Sites and Sampling -- 12.3 Gamma Ray Air Dose Rate at the Mushroom Collection Sites (Fig. 12.4) -- 12.4 Dynamics of Radiocesium in Each of the University of Tokyo Forests (Fig. 12.5) -- 12.4.1 Litter and Soil Layer -- 12.4.2 Mushrooms -- 12.5 Dynamics of Radiocesium in the Same Sampling Sites (Figs. 12.6 and 12.7) -- 12.6 The Relationship Between Radiocesium Contamination of Mycorrhizal Mushrooms and Soils (Fig. 12.8) -- 12.7 Possible Mechanism Determining Radiocesium Content - The Relationship Between 137Cs and 40K (Figs. 12.9 and 12.10) -- 12.8 Features of Radioactive Contamination with Different Date of Fallout (Fig. 12.11) -- 12.9 Conclusion -- References -- Chapter 13: The Spatial Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North Fukushima After the Nuclear Power Station Accident -- 13.1 Introduction -- 13.2 Material and Method -- 13.2.1 Study Site -- 13.2.2 Sampling and 137Cs Concentration Measurements.
13.2.3 Estimation of 137Cs Accumulation and Its Environmental Half-Life -- 13.3 Results -- 13.3.1 Annual Changes of 137Cs Accumulation in Litter Layers, Soils and Trees -- 13.3.2 Changes in 137Cs Accumulation in Each Compartment of the Catchment -- 13.4 Discussion -- 13.4.1 Redistribution of the 137Cs Accumulation -- 13.4.2 Catchment-Scale Environmental Half-Life of the 137Cs Accumulation -- 13.5 Perspective -- References -- Chapter 14: Parallel Measurement of Ambient and Individual External Radiation in Iitate Village, Fukushima -- 14.1 Introduction -- 14.2 Methods -- 14.3 Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Mobility of Fallout Radiocesium Depending on the Land Use in Kasumigaura Basin -- 15.1 Introduction -- 15.2 Methods -- 15.2.1 Characteristics of the Study Area -- 15.2.2 Measurement Apparatus of Deposited Radiocesium per Unit Area (kBq M−2) -- 15.2.3 Measurement and Analysis of Radioactivity -- 15.3 Results and Discussion -- 15.4 Conclusions -- References -- Chapter 16: Challenges of Agricultural Land Remediation and Renewal of Agriculture in Iitate Village by a Collaboration Between Researchers and a Non-profit Organization -- 16.1 Introduction -- 16.2 Collaboration Between Researchers and NPO -- 16.2.1 Authorized NPO "Resurrection of Fukushima" (Resurrection of Fukushima 2017) -- 16.2.2 Fukushima Reconstruction Agricultural Engineering Group (Fukushima Reconstruction Agricultural Engineering Meeting 2017) -- 16.2.3 Campus Group "Madei" -- 16.2.4 Rehabilitation Support Project (University of Tokyo Agricultural Life Science Graduate School of Grants-in-Aids Rehabilitation Support Project 2017) of the Graduate School of Agriculture and Life Sciences (GSALS), The University of Tokyo -- 16.3 Development of Agricultural Land Decontamination Method by Farmers Themselves (Mizoguchi 2013).
16.3.1 Muddy Water Flushing Out Method with a Hand Weed Machine -- 16.3.2 Muddy Water Flushing Out Method with a Tractor (Mizoguchi 2014b) -- 16.3.3 Burial Method of Contaminated Soil-Madei Method (Mizoguchi et al. 2013) -- 16.3.4 Monitoring of Buried Contaminated Soil (Mizoguchi et al. 2015) -- 16.3.5 Environmental Monitoring in the Iitate Village (Mizoguchi 2013b) -- 16.4 The Current Status of Agricultural Land After Decontamination -- 16.5 Rural Reconstruction Scenario -- 16.5.1 Creation of a New Japanese Agriculture Model (Mizoguchi 2015b) -- 16.5.2 Human Resource Development -- 16.6 Conclusion -- References -- Chapter 17: Radiocesium Contamination on a University Campus and in Forests in Kashiwa City, Chiba Prefecture, a Suburb of Metropolitan Tokyo -- 17.1 Introduction -- 17.2 Study Area and Methods -- 17.3 Air Dose Rate and Soil Contamination in 2011 in Relation to the Land Cover -- 17.4 Radiocesium Concentrations in Biological Samples -- 17.5 Radiocesium Contamination in Forest Trees and Soil in the Winter of 2011 -- 17.6 Forest Type, Air Dose Rate, and Soil Contamination in the UTokyo Campus Forest in 2013 -- 17.7 Decontamination Experiment in a Nursery Lawn -- 17.8 Change in Radiocesium Distribution in Deciduous Forest Soil in Oaota in 2013-2015 -- 17.9 Conclusion -- References -- Chapter 18: The State of Fisheries and Marine Species in Fukushima: Six Years After the 2011 Disaster -- 18.1 Introduction -- 18.2 Declining Level of Radiocesium Contained in Fish and Fishery Products -- 18.3 Development of Biological Studies on Fish and Radioactive Substances -- 18.4 Limited Resumption of Fishing in Fukushima Waters -- 18.5 Weak Consumer Confidence and Risk-Averse Distributers -- 18.6 Increased Abundance of Key Target Fish Species in Fukushima -- 18.7 Conclusion -- References -- Chapter 19: Visualization of Ion Transport in Plants.
19.1 Introduction.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
O`Brien, Martin.
Tanoi, Keitaro.
Print version: Nakanishi, Tomoko M. Agricultural Implications of the Fukushima Nuclear Accident (III) Singapore : Springer Singapore Pte. Limited,c2019 9789811332173
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5660336 Click to View
language English
format eBook
author Nakanishi, Tomoko M.
spellingShingle Nakanishi, Tomoko M.
Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
Intro -- Foreword -- Preface -- Contents -- Chapter 1: An Overview of Our Research -- 1.1 General Features of the Fallout -- 1.2 Radioactivity Measurement -- 1.3 A Brief Summary of Our Findings -- 1.3.1 Soil -- 1.3.1.1 Vertical Migration of Radiocesium -- 1.3.1.2 137Cs Adsorption Site -- 1.3.1.3 133Cs and 137Cs -- 1.3.2 Plants -- 1.3.2.1 Rice and Soybean -- 1.3.2.2 Fruit Trees -- 1.3.3 Forests and Animals -- 1.3.3.1 Forests -- 1.3.3.2 Animals -- 1.4 Decontamination Trial -- 1.5 Conclusion -- References -- Chapter 2: Transfer of Radiocesium to Rice in Contaminated Paddy Fields -- 2.1 Radiocesium in the Paddy Field Ecosystem -- 2.2 Transfer of Radiocesium to Rice in 2011 (After the Accident) -- 2.3 Experimental Cultivation in 2012 -- 2.4 The Experimental Cultivation in Oguni, Date City -- 2.5 No Decrease of Radiocesium in Rice -- 2.6 Summary of the Experiments Performed in Oguni, Date City -- References -- Chapter 3: Cesium Translocation in Rice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 137Cs Experiment to Grow the Three Rice Cultivars Hydroponically in a Growth Chamber -- 3.2.2 Paddy Field Experiment to Observe 133Cs Distribution in Grains -- 3.2.3 137Cs Tracer Experiment Using Juvenile-Phase Rice -- 3.3 Results and Discussion -- References -- Chapter 4: Absorption of Radioceasium in Soybean -- 4.1 Introduction -- 4.2 The Concentration Distribution of Cs in Soybean Seeds -- 4.3 Potassium Behavior in the Soil with Low Effectiveness of Potassium Application -- 4.4 The Effect of Nitrogen Fertilization on RCs Absorption in Soybean -- References -- Chapter 5: An Observational Study of Pigs Exposed to Radiation -- 5.1 Introduction -- 5.2 Methods and Material -- 5.3 Results -- 5.3.1 Exposure Levels in Pigs -- 5.3.2 Reproductive Performance -- 5.3.3 Hematology Analyses and Biochemical Indices -- 5.4 Discussion and Conclusion -- References.
Chapter 6: A Composting System to Decompose Radiocesium Contaminated Baled Grass Silage -- 6.1 Composting Organic Waste Contaminated with Radioactive Cesium -- 6.2 Reduction in the Volume and Weight of Silage Contaminated with Radiocesium by an Aerobic, High-Temperature Composting System -- 6.3 Dynamics of Radiocesium in Crops Grown with Radioactive Contaminated Silage Compost -- 6.4 Conclusion -- References -- Chapter 7: Weathered Biotite: A Key Material of Radioactive Contamination in Fukushima -- 7.1 Introduction -- 7.2 Speciation of the Radioactive Particles in the Soil of Fukushima -- 7.3 Mineralogical Characterization of Weathered Biotite (WB) -- 7.3.1 Sorption and Desorption Behavior of Cs to WB -- 7.4 Conclusions -- References -- Chapter 8: Radiocesium Accumulation in Koshiabura (Eleutherococcus sciadophylloides) and Other Wild Vegetables in Fukushima Prefecture -- 8.1 Monitoring and Examination of Agricultural Products -- 8.2 Wild Vegetables and Local People -- 8.3 Reasons for High Radiocesium Concentration in Wild Vegetables -- 8.4 Radiocesium Concentration of Each Category of Wild Vegetables -- 8.5 The Seasonal Transition of Radiocesium Concentration in Koshiabura -- 8.6 Conclusion -- References -- Chapter 9: The Transition of Radiocesium in Peach Trees After the Fukushima Nuclear Accident -- 9.1 Introduction -- 9.2 The Year-Over-Year Transition of Radiocesium in Fruit -- 9.3 The Year-Over-Year Transition of Radiocesium in Trees -- 9.4 The Current Investigation -- References -- Chapter 10: Application of the Artificial Annual Environmental Cycle and Dormancy-Induced Suppression of Cesium Uptake in Poplar -- 10.1 Introduction -- 10.2 Application of the Artificial Annual Environmental Cycle to Poplar -- 10.3 Measurement of 137Cs and 42K Distributions in Poplar -- 10.4 Expression of Potassium Influx Transporters in Poplar Root.
10.5 Perspectives in Cs+ Transporter Research -- References -- Chapter 11: Radiocesium Contamination in Forests and the Current Situation of Growing Oak Trees for Mushroom Logs -- 11.1 Introduction -- 11.2 Objective and Research Field -- 11.3 Field Investigation -- 11.3.1 Sample Collection -- 11.3.2 Property of the Soil -- 11.3.3 137Cs Concentrations in Above Ground Parts -- 11.3.4 Seasonal Variation in Leaf 137Cs Concentration -- 11.4 Comparison Between 137Cs Distribution and 133Cs Distribution in Wood, Bark, and New Branches -- 11.5 Extra Field Investigation to Evaluate the Impact of Field Use History on the Current 137Cs Content in Trees -- 11.6 137Cs Tracer Experiment Using Hydroponically Grown Young Oak Seedlings -- 11.7 Conclusion -- References -- Chapter 12: Radiocesium Dynamics in Wild Mushrooms During the First Five Years After the Fukushima Accident -- 12.1 Introduction -- 12.2 Research Sites and Sampling -- 12.3 Gamma Ray Air Dose Rate at the Mushroom Collection Sites (Fig. 12.4) -- 12.4 Dynamics of Radiocesium in Each of the University of Tokyo Forests (Fig. 12.5) -- 12.4.1 Litter and Soil Layer -- 12.4.2 Mushrooms -- 12.5 Dynamics of Radiocesium in the Same Sampling Sites (Figs. 12.6 and 12.7) -- 12.6 The Relationship Between Radiocesium Contamination of Mycorrhizal Mushrooms and Soils (Fig. 12.8) -- 12.7 Possible Mechanism Determining Radiocesium Content - The Relationship Between 137Cs and 40K (Figs. 12.9 and 12.10) -- 12.8 Features of Radioactive Contamination with Different Date of Fallout (Fig. 12.11) -- 12.9 Conclusion -- References -- Chapter 13: The Spatial Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North Fukushima After the Nuclear Power Station Accident -- 13.1 Introduction -- 13.2 Material and Method -- 13.2.1 Study Site -- 13.2.2 Sampling and 137Cs Concentration Measurements.
13.2.3 Estimation of 137Cs Accumulation and Its Environmental Half-Life -- 13.3 Results -- 13.3.1 Annual Changes of 137Cs Accumulation in Litter Layers, Soils and Trees -- 13.3.2 Changes in 137Cs Accumulation in Each Compartment of the Catchment -- 13.4 Discussion -- 13.4.1 Redistribution of the 137Cs Accumulation -- 13.4.2 Catchment-Scale Environmental Half-Life of the 137Cs Accumulation -- 13.5 Perspective -- References -- Chapter 14: Parallel Measurement of Ambient and Individual External Radiation in Iitate Village, Fukushima -- 14.1 Introduction -- 14.2 Methods -- 14.3 Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Mobility of Fallout Radiocesium Depending on the Land Use in Kasumigaura Basin -- 15.1 Introduction -- 15.2 Methods -- 15.2.1 Characteristics of the Study Area -- 15.2.2 Measurement Apparatus of Deposited Radiocesium per Unit Area (kBq M−2) -- 15.2.3 Measurement and Analysis of Radioactivity -- 15.3 Results and Discussion -- 15.4 Conclusions -- References -- Chapter 16: Challenges of Agricultural Land Remediation and Renewal of Agriculture in Iitate Village by a Collaboration Between Researchers and a Non-profit Organization -- 16.1 Introduction -- 16.2 Collaboration Between Researchers and NPO -- 16.2.1 Authorized NPO "Resurrection of Fukushima" (Resurrection of Fukushima 2017) -- 16.2.2 Fukushima Reconstruction Agricultural Engineering Group (Fukushima Reconstruction Agricultural Engineering Meeting 2017) -- 16.2.3 Campus Group "Madei" -- 16.2.4 Rehabilitation Support Project (University of Tokyo Agricultural Life Science Graduate School of Grants-in-Aids Rehabilitation Support Project 2017) of the Graduate School of Agriculture and Life Sciences (GSALS), The University of Tokyo -- 16.3 Development of Agricultural Land Decontamination Method by Farmers Themselves (Mizoguchi 2013).
16.3.1 Muddy Water Flushing Out Method with a Hand Weed Machine -- 16.3.2 Muddy Water Flushing Out Method with a Tractor (Mizoguchi 2014b) -- 16.3.3 Burial Method of Contaminated Soil-Madei Method (Mizoguchi et al. 2013) -- 16.3.4 Monitoring of Buried Contaminated Soil (Mizoguchi et al. 2015) -- 16.3.5 Environmental Monitoring in the Iitate Village (Mizoguchi 2013b) -- 16.4 The Current Status of Agricultural Land After Decontamination -- 16.5 Rural Reconstruction Scenario -- 16.5.1 Creation of a New Japanese Agriculture Model (Mizoguchi 2015b) -- 16.5.2 Human Resource Development -- 16.6 Conclusion -- References -- Chapter 17: Radiocesium Contamination on a University Campus and in Forests in Kashiwa City, Chiba Prefecture, a Suburb of Metropolitan Tokyo -- 17.1 Introduction -- 17.2 Study Area and Methods -- 17.3 Air Dose Rate and Soil Contamination in 2011 in Relation to the Land Cover -- 17.4 Radiocesium Concentrations in Biological Samples -- 17.5 Radiocesium Contamination in Forest Trees and Soil in the Winter of 2011 -- 17.6 Forest Type, Air Dose Rate, and Soil Contamination in the UTokyo Campus Forest in 2013 -- 17.7 Decontamination Experiment in a Nursery Lawn -- 17.8 Change in Radiocesium Distribution in Deciduous Forest Soil in Oaota in 2013-2015 -- 17.9 Conclusion -- References -- Chapter 18: The State of Fisheries and Marine Species in Fukushima: Six Years After the 2011 Disaster -- 18.1 Introduction -- 18.2 Declining Level of Radiocesium Contained in Fish and Fishery Products -- 18.3 Development of Biological Studies on Fish and Radioactive Substances -- 18.4 Limited Resumption of Fishing in Fukushima Waters -- 18.5 Weak Consumer Confidence and Risk-Averse Distributers -- 18.6 Increased Abundance of Key Target Fish Species in Fukushima -- 18.7 Conclusion -- References -- Chapter 19: Visualization of Ion Transport in Plants.
19.1 Introduction.
author_facet Nakanishi, Tomoko M.
O`Brien, Martin.
Tanoi, Keitaro.
author_variant t m n tm tmn
author2 O`Brien, Martin.
Tanoi, Keitaro.
author2_variant m o mo
k t kt
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Nakanishi, Tomoko M.
title Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
title_sub After 7 Years.
title_full Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
title_fullStr Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
title_full_unstemmed Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
title_auth Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
title_new Agricultural Implications of the Fukushima Nuclear Accident (III) :
title_sort agricultural implications of the fukushima nuclear accident (iii) : after 7 years.
publisher Springer Singapore Pte. Limited,
publishDate 2019
physical 1 online resource (250 pages)
edition 1st ed.
contents Intro -- Foreword -- Preface -- Contents -- Chapter 1: An Overview of Our Research -- 1.1 General Features of the Fallout -- 1.2 Radioactivity Measurement -- 1.3 A Brief Summary of Our Findings -- 1.3.1 Soil -- 1.3.1.1 Vertical Migration of Radiocesium -- 1.3.1.2 137Cs Adsorption Site -- 1.3.1.3 133Cs and 137Cs -- 1.3.2 Plants -- 1.3.2.1 Rice and Soybean -- 1.3.2.2 Fruit Trees -- 1.3.3 Forests and Animals -- 1.3.3.1 Forests -- 1.3.3.2 Animals -- 1.4 Decontamination Trial -- 1.5 Conclusion -- References -- Chapter 2: Transfer of Radiocesium to Rice in Contaminated Paddy Fields -- 2.1 Radiocesium in the Paddy Field Ecosystem -- 2.2 Transfer of Radiocesium to Rice in 2011 (After the Accident) -- 2.3 Experimental Cultivation in 2012 -- 2.4 The Experimental Cultivation in Oguni, Date City -- 2.5 No Decrease of Radiocesium in Rice -- 2.6 Summary of the Experiments Performed in Oguni, Date City -- References -- Chapter 3: Cesium Translocation in Rice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 137Cs Experiment to Grow the Three Rice Cultivars Hydroponically in a Growth Chamber -- 3.2.2 Paddy Field Experiment to Observe 133Cs Distribution in Grains -- 3.2.3 137Cs Tracer Experiment Using Juvenile-Phase Rice -- 3.3 Results and Discussion -- References -- Chapter 4: Absorption of Radioceasium in Soybean -- 4.1 Introduction -- 4.2 The Concentration Distribution of Cs in Soybean Seeds -- 4.3 Potassium Behavior in the Soil with Low Effectiveness of Potassium Application -- 4.4 The Effect of Nitrogen Fertilization on RCs Absorption in Soybean -- References -- Chapter 5: An Observational Study of Pigs Exposed to Radiation -- 5.1 Introduction -- 5.2 Methods and Material -- 5.3 Results -- 5.3.1 Exposure Levels in Pigs -- 5.3.2 Reproductive Performance -- 5.3.3 Hematology Analyses and Biochemical Indices -- 5.4 Discussion and Conclusion -- References.
Chapter 6: A Composting System to Decompose Radiocesium Contaminated Baled Grass Silage -- 6.1 Composting Organic Waste Contaminated with Radioactive Cesium -- 6.2 Reduction in the Volume and Weight of Silage Contaminated with Radiocesium by an Aerobic, High-Temperature Composting System -- 6.3 Dynamics of Radiocesium in Crops Grown with Radioactive Contaminated Silage Compost -- 6.4 Conclusion -- References -- Chapter 7: Weathered Biotite: A Key Material of Radioactive Contamination in Fukushima -- 7.1 Introduction -- 7.2 Speciation of the Radioactive Particles in the Soil of Fukushima -- 7.3 Mineralogical Characterization of Weathered Biotite (WB) -- 7.3.1 Sorption and Desorption Behavior of Cs to WB -- 7.4 Conclusions -- References -- Chapter 8: Radiocesium Accumulation in Koshiabura (Eleutherococcus sciadophylloides) and Other Wild Vegetables in Fukushima Prefecture -- 8.1 Monitoring and Examination of Agricultural Products -- 8.2 Wild Vegetables and Local People -- 8.3 Reasons for High Radiocesium Concentration in Wild Vegetables -- 8.4 Radiocesium Concentration of Each Category of Wild Vegetables -- 8.5 The Seasonal Transition of Radiocesium Concentration in Koshiabura -- 8.6 Conclusion -- References -- Chapter 9: The Transition of Radiocesium in Peach Trees After the Fukushima Nuclear Accident -- 9.1 Introduction -- 9.2 The Year-Over-Year Transition of Radiocesium in Fruit -- 9.3 The Year-Over-Year Transition of Radiocesium in Trees -- 9.4 The Current Investigation -- References -- Chapter 10: Application of the Artificial Annual Environmental Cycle and Dormancy-Induced Suppression of Cesium Uptake in Poplar -- 10.1 Introduction -- 10.2 Application of the Artificial Annual Environmental Cycle to Poplar -- 10.3 Measurement of 137Cs and 42K Distributions in Poplar -- 10.4 Expression of Potassium Influx Transporters in Poplar Root.
10.5 Perspectives in Cs+ Transporter Research -- References -- Chapter 11: Radiocesium Contamination in Forests and the Current Situation of Growing Oak Trees for Mushroom Logs -- 11.1 Introduction -- 11.2 Objective and Research Field -- 11.3 Field Investigation -- 11.3.1 Sample Collection -- 11.3.2 Property of the Soil -- 11.3.3 137Cs Concentrations in Above Ground Parts -- 11.3.4 Seasonal Variation in Leaf 137Cs Concentration -- 11.4 Comparison Between 137Cs Distribution and 133Cs Distribution in Wood, Bark, and New Branches -- 11.5 Extra Field Investigation to Evaluate the Impact of Field Use History on the Current 137Cs Content in Trees -- 11.6 137Cs Tracer Experiment Using Hydroponically Grown Young Oak Seedlings -- 11.7 Conclusion -- References -- Chapter 12: Radiocesium Dynamics in Wild Mushrooms During the First Five Years After the Fukushima Accident -- 12.1 Introduction -- 12.2 Research Sites and Sampling -- 12.3 Gamma Ray Air Dose Rate at the Mushroom Collection Sites (Fig. 12.4) -- 12.4 Dynamics of Radiocesium in Each of the University of Tokyo Forests (Fig. 12.5) -- 12.4.1 Litter and Soil Layer -- 12.4.2 Mushrooms -- 12.5 Dynamics of Radiocesium in the Same Sampling Sites (Figs. 12.6 and 12.7) -- 12.6 The Relationship Between Radiocesium Contamination of Mycorrhizal Mushrooms and Soils (Fig. 12.8) -- 12.7 Possible Mechanism Determining Radiocesium Content - The Relationship Between 137Cs and 40K (Figs. 12.9 and 12.10) -- 12.8 Features of Radioactive Contamination with Different Date of Fallout (Fig. 12.11) -- 12.9 Conclusion -- References -- Chapter 13: The Spatial Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North Fukushima After the Nuclear Power Station Accident -- 13.1 Introduction -- 13.2 Material and Method -- 13.2.1 Study Site -- 13.2.2 Sampling and 137Cs Concentration Measurements.
13.2.3 Estimation of 137Cs Accumulation and Its Environmental Half-Life -- 13.3 Results -- 13.3.1 Annual Changes of 137Cs Accumulation in Litter Layers, Soils and Trees -- 13.3.2 Changes in 137Cs Accumulation in Each Compartment of the Catchment -- 13.4 Discussion -- 13.4.1 Redistribution of the 137Cs Accumulation -- 13.4.2 Catchment-Scale Environmental Half-Life of the 137Cs Accumulation -- 13.5 Perspective -- References -- Chapter 14: Parallel Measurement of Ambient and Individual External Radiation in Iitate Village, Fukushima -- 14.1 Introduction -- 14.2 Methods -- 14.3 Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Mobility of Fallout Radiocesium Depending on the Land Use in Kasumigaura Basin -- 15.1 Introduction -- 15.2 Methods -- 15.2.1 Characteristics of the Study Area -- 15.2.2 Measurement Apparatus of Deposited Radiocesium per Unit Area (kBq M−2) -- 15.2.3 Measurement and Analysis of Radioactivity -- 15.3 Results and Discussion -- 15.4 Conclusions -- References -- Chapter 16: Challenges of Agricultural Land Remediation and Renewal of Agriculture in Iitate Village by a Collaboration Between Researchers and a Non-profit Organization -- 16.1 Introduction -- 16.2 Collaboration Between Researchers and NPO -- 16.2.1 Authorized NPO "Resurrection of Fukushima" (Resurrection of Fukushima 2017) -- 16.2.2 Fukushima Reconstruction Agricultural Engineering Group (Fukushima Reconstruction Agricultural Engineering Meeting 2017) -- 16.2.3 Campus Group "Madei" -- 16.2.4 Rehabilitation Support Project (University of Tokyo Agricultural Life Science Graduate School of Grants-in-Aids Rehabilitation Support Project 2017) of the Graduate School of Agriculture and Life Sciences (GSALS), The University of Tokyo -- 16.3 Development of Agricultural Land Decontamination Method by Farmers Themselves (Mizoguchi 2013).
16.3.1 Muddy Water Flushing Out Method with a Hand Weed Machine -- 16.3.2 Muddy Water Flushing Out Method with a Tractor (Mizoguchi 2014b) -- 16.3.3 Burial Method of Contaminated Soil-Madei Method (Mizoguchi et al. 2013) -- 16.3.4 Monitoring of Buried Contaminated Soil (Mizoguchi et al. 2015) -- 16.3.5 Environmental Monitoring in the Iitate Village (Mizoguchi 2013b) -- 16.4 The Current Status of Agricultural Land After Decontamination -- 16.5 Rural Reconstruction Scenario -- 16.5.1 Creation of a New Japanese Agriculture Model (Mizoguchi 2015b) -- 16.5.2 Human Resource Development -- 16.6 Conclusion -- References -- Chapter 17: Radiocesium Contamination on a University Campus and in Forests in Kashiwa City, Chiba Prefecture, a Suburb of Metropolitan Tokyo -- 17.1 Introduction -- 17.2 Study Area and Methods -- 17.3 Air Dose Rate and Soil Contamination in 2011 in Relation to the Land Cover -- 17.4 Radiocesium Concentrations in Biological Samples -- 17.5 Radiocesium Contamination in Forest Trees and Soil in the Winter of 2011 -- 17.6 Forest Type, Air Dose Rate, and Soil Contamination in the UTokyo Campus Forest in 2013 -- 17.7 Decontamination Experiment in a Nursery Lawn -- 17.8 Change in Radiocesium Distribution in Deciduous Forest Soil in Oaota in 2013-2015 -- 17.9 Conclusion -- References -- Chapter 18: The State of Fisheries and Marine Species in Fukushima: Six Years After the 2011 Disaster -- 18.1 Introduction -- 18.2 Declining Level of Radiocesium Contained in Fish and Fishery Products -- 18.3 Development of Biological Studies on Fish and Radioactive Substances -- 18.4 Limited Resumption of Fishing in Fukushima Waters -- 18.5 Weak Consumer Confidence and Risk-Averse Distributers -- 18.6 Increased Abundance of Key Target Fish Species in Fukushima -- 18.7 Conclusion -- References -- Chapter 19: Visualization of Ion Transport in Plants.
19.1 Introduction.
isbn 9789811332180
9789811332173
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC795
callnumber-sort QC 3795.32 R3
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5660336
illustrated Not Illustrated
oclc_num 1084654008
work_keys_str_mv AT nakanishitomokom agriculturalimplicationsofthefukushimanuclearaccidentiiiafter7years
AT obrienmartin agriculturalimplicationsofthefukushimanuclearaccidentiiiafter7years
AT tanoikeitaro agriculturalimplicationsofthefukushimanuclearaccidentiiiafter7years
status_str n
ids_txt_mv (MiAaPQ)5005660336
(Au-PeEL)EBL5660336
(OCoLC)1084654008
carrierType_str_mv cr
is_hierarchy_title Agricultural Implications of the Fukushima Nuclear Accident (III) : After 7 Years.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331055549644800
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>12416nam a22004573i 4500</leader><controlfield tag="001">5005660336</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073831.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2019 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789811332180</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789811332173</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)5005660336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5660336</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1084654008</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC795.32.R3</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nakanishi, Tomoko M.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Agricultural Implications of the Fukushima Nuclear Accident (III) :</subfield><subfield code="b">After 7 Years.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (250 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Foreword -- Preface -- Contents -- Chapter 1: An Overview of Our Research -- 1.1 General Features of the Fallout -- 1.2 Radioactivity Measurement -- 1.3 A Brief Summary of Our Findings -- 1.3.1 Soil -- 1.3.1.1 Vertical Migration of Radiocesium -- 1.3.1.2 137Cs Adsorption Site -- 1.3.1.3 133Cs and 137Cs -- 1.3.2 Plants -- 1.3.2.1 Rice and Soybean -- 1.3.2.2 Fruit Trees -- 1.3.3 Forests and Animals -- 1.3.3.1 Forests -- 1.3.3.2 Animals -- 1.4 Decontamination Trial -- 1.5 Conclusion -- References -- Chapter 2: Transfer of Radiocesium to Rice in Contaminated Paddy Fields -- 2.1 Radiocesium in the Paddy Field Ecosystem -- 2.2 Transfer of Radiocesium to Rice in 2011 (After the Accident) -- 2.3 Experimental Cultivation in 2012 -- 2.4 The Experimental Cultivation in Oguni, Date City -- 2.5 No Decrease of Radiocesium in Rice -- 2.6 Summary of the Experiments Performed in Oguni, Date City -- References -- Chapter 3: Cesium Translocation in Rice -- 3.1 Introduction -- 3.2 Materials and Methods -- 3.2.1 137Cs Experiment to Grow the Three Rice Cultivars Hydroponically in a Growth Chamber -- 3.2.2 Paddy Field Experiment to Observe 133Cs Distribution in Grains -- 3.2.3 137Cs Tracer Experiment Using Juvenile-Phase Rice -- 3.3 Results and Discussion -- References -- Chapter 4: Absorption of Radioceasium in Soybean -- 4.1 Introduction -- 4.2 The Concentration Distribution of Cs in Soybean Seeds -- 4.3 Potassium Behavior in the Soil with Low Effectiveness of Potassium Application -- 4.4 The Effect of Nitrogen Fertilization on RCs Absorption in Soybean -- References -- Chapter 5: An Observational Study of Pigs Exposed to Radiation -- 5.1 Introduction -- 5.2 Methods and Material -- 5.3 Results -- 5.3.1 Exposure Levels in Pigs -- 5.3.2 Reproductive Performance -- 5.3.3 Hematology Analyses and Biochemical Indices -- 5.4 Discussion and Conclusion -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 6: A Composting System to Decompose Radiocesium Contaminated Baled Grass Silage -- 6.1 Composting Organic Waste Contaminated with Radioactive Cesium -- 6.2 Reduction in the Volume and Weight of Silage Contaminated with Radiocesium by an Aerobic, High-Temperature Composting System -- 6.3 Dynamics of Radiocesium in Crops Grown with Radioactive Contaminated Silage Compost -- 6.4 Conclusion -- References -- Chapter 7: Weathered Biotite: A Key Material of Radioactive Contamination in Fukushima -- 7.1 Introduction -- 7.2 Speciation of the Radioactive Particles in the Soil of Fukushima -- 7.3 Mineralogical Characterization of Weathered Biotite (WB) -- 7.3.1 Sorption and Desorption Behavior of Cs to WB -- 7.4 Conclusions -- References -- Chapter 8: Radiocesium Accumulation in Koshiabura (Eleutherococcus sciadophylloides) and Other Wild Vegetables in Fukushima Prefecture -- 8.1 Monitoring and Examination of Agricultural Products -- 8.2 Wild Vegetables and Local People -- 8.3 Reasons for High Radiocesium Concentration in Wild Vegetables -- 8.4 Radiocesium Concentration of Each Category of Wild Vegetables -- 8.5 The Seasonal Transition of Radiocesium Concentration in Koshiabura -- 8.6 Conclusion -- References -- Chapter 9: The Transition of Radiocesium in Peach Trees After the Fukushima Nuclear Accident -- 9.1 Introduction -- 9.2 The Year-Over-Year Transition of Radiocesium in Fruit -- 9.3 The Year-Over-Year Transition of Radiocesium in Trees -- 9.4 The Current Investigation -- References -- Chapter 10: Application of the Artificial Annual Environmental Cycle and Dormancy-Induced Suppression of Cesium Uptake in Poplar -- 10.1 Introduction -- 10.2 Application of the Artificial Annual Environmental Cycle to Poplar -- 10.3 Measurement of 137Cs and 42K Distributions in Poplar -- 10.4 Expression of Potassium Influx Transporters in Poplar Root.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.5 Perspectives in Cs+ Transporter Research -- References -- Chapter 11: Radiocesium Contamination in Forests and the Current Situation of Growing Oak Trees for Mushroom Logs -- 11.1 Introduction -- 11.2 Objective and Research Field -- 11.3 Field Investigation -- 11.3.1 Sample Collection -- 11.3.2 Property of the Soil -- 11.3.3 137Cs Concentrations in Above Ground Parts -- 11.3.4 Seasonal Variation in Leaf 137Cs Concentration -- 11.4 Comparison Between 137Cs Distribution and 133Cs Distribution in Wood, Bark, and New Branches -- 11.5 Extra Field Investigation to Evaluate the Impact of Field Use History on the Current 137Cs Content in Trees -- 11.6 137Cs Tracer Experiment Using Hydroponically Grown Young Oak Seedlings -- 11.7 Conclusion -- References -- Chapter 12: Radiocesium Dynamics in Wild Mushrooms During the First Five Years After the Fukushima Accident -- 12.1 Introduction -- 12.2 Research Sites and Sampling -- 12.3 Gamma Ray Air Dose Rate at the Mushroom Collection Sites (Fig. 12.4) -- 12.4 Dynamics of Radiocesium in Each of the University of Tokyo Forests (Fig. 12.5) -- 12.4.1 Litter and Soil Layer -- 12.4.2 Mushrooms -- 12.5 Dynamics of Radiocesium in the Same Sampling Sites (Figs. 12.6 and 12.7) -- 12.6 The Relationship Between Radiocesium Contamination of Mycorrhizal Mushrooms and Soils (Fig. 12.8) -- 12.7 Possible Mechanism Determining Radiocesium Content - The Relationship Between 137Cs and 40K (Figs. 12.9 and 12.10) -- 12.8 Features of Radioactive Contamination with Different Date of Fallout (Fig. 12.11) -- 12.9 Conclusion -- References -- Chapter 13: The Spatial Distribution of Radiocesium Over a Four-Year Period in a Forest Ecosystem in North Fukushima After the Nuclear Power Station Accident -- 13.1 Introduction -- 13.2 Material and Method -- 13.2.1 Study Site -- 13.2.2 Sampling and 137Cs Concentration Measurements.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">13.2.3 Estimation of 137Cs Accumulation and Its Environmental Half-Life -- 13.3 Results -- 13.3.1 Annual Changes of 137Cs Accumulation in Litter Layers, Soils and Trees -- 13.3.2 Changes in 137Cs Accumulation in Each Compartment of the Catchment -- 13.4 Discussion -- 13.4.1 Redistribution of the 137Cs Accumulation -- 13.4.2 Catchment-Scale Environmental Half-Life of the 137Cs Accumulation -- 13.5 Perspective -- References -- Chapter 14: Parallel Measurement of Ambient and Individual External Radiation in Iitate Village, Fukushima -- 14.1 Introduction -- 14.2 Methods -- 14.3 Results and Discussion -- 14.4 Conclusion -- References -- Chapter 15: Mobility of Fallout Radiocesium Depending on the Land Use in Kasumigaura Basin -- 15.1 Introduction -- 15.2 Methods -- 15.2.1 Characteristics of the Study Area -- 15.2.2 Measurement Apparatus of Deposited Radiocesium per Unit Area (kBq M−2) -- 15.2.3 Measurement and Analysis of Radioactivity -- 15.3 Results and Discussion -- 15.4 Conclusions -- References -- Chapter 16: Challenges of Agricultural Land Remediation and Renewal of Agriculture in Iitate Village by a Collaboration Between Researchers and a Non-profit Organization -- 16.1 Introduction -- 16.2 Collaboration Between Researchers and NPO -- 16.2.1 Authorized NPO "Resurrection of Fukushima" (Resurrection of Fukushima 2017) -- 16.2.2 Fukushima Reconstruction Agricultural Engineering Group (Fukushima Reconstruction Agricultural Engineering Meeting 2017) -- 16.2.3 Campus Group "Madei" -- 16.2.4 Rehabilitation Support Project (University of Tokyo Agricultural Life Science Graduate School of Grants-in-Aids Rehabilitation Support Project 2017) of the Graduate School of Agriculture and Life Sciences (GSALS), The University of Tokyo -- 16.3 Development of Agricultural Land Decontamination Method by Farmers Themselves (Mizoguchi 2013).</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">16.3.1 Muddy Water Flushing Out Method with a Hand Weed Machine -- 16.3.2 Muddy Water Flushing Out Method with a Tractor (Mizoguchi 2014b) -- 16.3.3 Burial Method of Contaminated Soil-Madei Method (Mizoguchi et al. 2013) -- 16.3.4 Monitoring of Buried Contaminated Soil (Mizoguchi et al. 2015) -- 16.3.5 Environmental Monitoring in the Iitate Village (Mizoguchi 2013b) -- 16.4 The Current Status of Agricultural Land After Decontamination -- 16.5 Rural Reconstruction Scenario -- 16.5.1 Creation of a New Japanese Agriculture Model (Mizoguchi 2015b) -- 16.5.2 Human Resource Development -- 16.6 Conclusion -- References -- Chapter 17: Radiocesium Contamination on a University Campus and in Forests in Kashiwa City, Chiba Prefecture, a Suburb of Metropolitan Tokyo -- 17.1 Introduction -- 17.2 Study Area and Methods -- 17.3 Air Dose Rate and Soil Contamination in 2011 in Relation to the Land Cover -- 17.4 Radiocesium Concentrations in Biological Samples -- 17.5 Radiocesium Contamination in Forest Trees and Soil in the Winter of 2011 -- 17.6 Forest Type, Air Dose Rate, and Soil Contamination in the UTokyo Campus Forest in 2013 -- 17.7 Decontamination Experiment in a Nursery Lawn -- 17.8 Change in Radiocesium Distribution in Deciduous Forest Soil in Oaota in 2013-2015 -- 17.9 Conclusion -- References -- Chapter 18: The State of Fisheries and Marine Species in Fukushima: Six Years After the 2011 Disaster -- 18.1 Introduction -- 18.2 Declining Level of Radiocesium Contained in Fish and Fishery Products -- 18.3 Development of Biological Studies on Fish and Radioactive Substances -- 18.4 Limited Resumption of Fishing in Fukushima Waters -- 18.5 Weak Consumer Confidence and Risk-Averse Distributers -- 18.6 Increased Abundance of Key Target Fish Species in Fukushima -- 18.7 Conclusion -- References -- Chapter 19: Visualization of Ion Transport in Plants.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">19.1 Introduction.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O`Brien, Martin.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanoi, Keitaro.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Nakanishi, Tomoko M.</subfield><subfield code="t">Agricultural Implications of the Fukushima Nuclear Accident (III)</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2019</subfield><subfield code="z">9789811332173</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=5660336</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>