Postharvest Biology and Nanotechnology.

Saved in:
Bibliographic Details
Superior document:New York Academy of Sciences Series
:
TeilnehmendeR:
Place / Publishing House:Newark : : John Wiley & Sons, Incorporated,, 2019.
©2019.
Year of Publication:2019
Edition:2nd ed.
Language:English
Series:New York Academy of Sciences Series
Online Access:
Physical Description:1 online resource (418 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Title Page
  • Copyright Page
  • Contents
  • Contributors
  • Preface
  • Chapter 1 Enhancing Food Security Through Postharvest Technology: Current and Future Perspectives
  • 1.1 Introduction
  • 1.2 Food Security: Changing Paradigms Linked to Food Quality and NCD Challenges
  • 1.2.1 Population
  • 1.2.2 Climate Change and Weather Patterns
  • 1.2.3 Food, Water, and Energy Security
  • 1.2.4 Choices in Increasing the World's Food Supply
  • 1.2.5 Saving More of the Food that We Already Produce
  • 1.2.6 Nanotechnology in Agriculture and Food
  • 1.2.7 Postharvest Technologies
  • References
  • Links
  • Chapter 2 Ripening and Senescence of Fleshy Fruits
  • 2.1 Introduction
  • 2.2 Fruit Growth and Development
  • 2.3 Climacteric and Non‐climacteric Fruits
  • 2.4 Metabolic and Physiological Changes During Fruit Ripening
  • 2.4.1 Carbon Metabolism
  • 2.4.2 Carotenoids and Flavonoids
  • 2.4.3 Aromatic Compounds
  • 2.5 Regulation of Fruit Ripening
  • 2.6 Transcriptional Regulation of Fruit Ripening
  • 2.7 Nitric Oxide and ROS Regulate Fruit Ripening and Senescence
  • 2.8 Epigenetic Modulation of Ripening Regulators
  • 2.9 Concluding Remarks
  • Author Contribution and Acknowledgments
  • References
  • Chapter 3 Ethylene Signal Transduction During Fruit Ripening and Senescence
  • 3.1 Introduction
  • 3.2 Ethylene Biosynthesis
  • 3.3 Membrane Lipid Catabolism during Ripening and Senescence
  • 3.4 Phospholipase D and its Role in Plant Developmental Processes
  • 3.4.1 PLD Gene Family and Classification
  • 3.4.2 PLD Domain Architecture
  • 3.4.3 Subcellular Localization of PLD
  • 3.4.4 Changes in PLD During Growth, Development, and Ripening
  • 3.5 Role of PLD in Growth and Development
  • 3.5.1 Role of PLD During Nutrient Deficiency
  • 3.5.2 Role of PLD in Hyperosmotic Stress
  • 3.5.3 PLD Response During Wounding
  • 3.5.4 Role of PLD in Pathogenesis Responses.
  • 3.5.5 PLD Activation by Oxidative Stress
  • 3.5.6 PLD Regulation During Ripening and Senescence
  • 3.6 Signal Transduction Sequences During Ripening
  • 3.6.1 Ethylene Signaling
  • 3.6.2 PLD‐regulated Lipid Signaling
  • 3.7 Function and Roles of Biomembrane in Signaling
  • 3.7.1 Phosphatidylinositol Metabolism in Senescence
  • 3.8 Phosphatidylinositol 3‐Kinase: A Potential Link in Ethylene Signal Transduction
  • 3.8.1 Phosphatidylinositol 3‐Kinases in Plant Growth and Development
  • 3.8.2 Phosphatidylinositol 3‐Kinase: Intermediaries in Ethylene Signal Transduction
  • 3.9 C2 Domains of PLD and PI3K
  • 3.9.1 C2 Domain of PLD
  • 3.9.2 C2 Domain of PI3K
  • Acknowledgment
  • References
  • Chapter 4 Preharvest and Postharvest Technologies Based on Hexanal: An Overview
  • 4.1 Introduction
  • 4.2 Ripening and Senescence
  • 4.3 Changes in Cell Membrane Structure and Properties
  • 4.3.1 Phospholipid Catabolism
  • 4.3.2 Phospholipase D
  • 4.4 Hexanal‐based Technologies
  • 4.5 Compositions for Preharvest Sprays and Postharvest Dips of Fruits and Vegetables
  • 4.6 Mechanism of Action of Hexanal
  • 4.7 Summary of Treatments and Effects
  • References
  • Chapter 5 Nitric Oxide Signaling in Plants
  • 5.1 Introduction
  • 5.2 Chemical Features of NO
  • 5.3 Endogenous Production of NO in Plants
  • 5.4 NO, Redox Balance, and Stress Tolerance
  • 5.4.1 Biotic Stress
  • 5.4.2 Abiotic Stress
  • 5.4.3 Redox Balance
  • 5.5 The Crosstalk between NO and Phytohormones
  • 5.6 Conclusion and Prospects
  • Acknowledgments
  • References
  • Chapter 6 Postharvest Uses of Ozone Application in Fresh Horticultural Produce
  • 6.1 Introduction
  • 6.2 History
  • 6.3 Properties and Reactions of Ozone
  • 6.3.1 Physical Properties
  • 6.3.2 Chemical Properties
  • 6.3.3 Biocidal Property
  • 6.4 Hazard Regulations
  • 6.5 Ozone Generation and Its Application
  • 6.5.1 Corona Discharge Method.
  • 6.5.2 Electrochemical Method
  • 6.5.3 Application of Ozone
  • 6.6 Effect of Ozone Application on Ethylene Levels and Respiration Rates
  • 6.7 Effect of Ozone Application on Fruit Quality
  • 6.7.1 Storage at Ambient Temperature
  • 6.7.2 Cold Storage
  • 6.7.3 Controlled Atmosphere Storage
  • 6.7.4 Modified Atmosphere Packaging
  • 6.7.5 1‐Methylcyclopropene Application Combined with Ozone Treatment
  • 6.8 Effect of Ozone Application on Surface Microbial Population and Storage Life of Fruits and Vegetables
  • 6.8.1 Effect of Ozone Treatment on Microbial Population
  • 6.8.2 Effect of Ozone Treatment on Storage Life
  • 6.9 Limitations and Negative Impacts of Ozone Application
  • 6.10 Conclusions
  • References
  • Chapter 7 Active and Intelligent Packaging for Reducing Postharvest Losses of Fruits and Vegetables
  • 7.1 Introduction
  • 7.2 Strategies Used in Preservation of Fruits and Vegetables
  • 7.3 New Developments in Fruit and Vegetable Packaging
  • 7.3.1 Microperforated Active MA Packaging and Its Modeling
  • 7.3.2 Packaging Materials: Modulation of Barrier Properties
  • 7.3.3 Gas‐releasing Films for Developing Antimicrobial Packaging Systems
  • 7.3.4 Volatile Organic Compounds: Quality Markers of MA‐Packaged Products
  • 7.4 Conclusions
  • References
  • Chapter 8 Application of Hexanal‐containing Compositions and Its Effect on Shelf‐life and Quality of Banana Varieties in Kenya
  • 8.1 Introduction
  • 8.2 Preharvest and Postharvest Hexanal Treatments of Banana
  • 8.2.1 Fruit Retention and Shelf‐life
  • 8.2.2 Peel Firmness
  • 8.2.3 Fruit Quality Parameters
  • Acknowledgment
  • References
  • Chapter 9 Hexanal Compositions for Enhancing Shelf‐life and Quality in Papaya
  • 9.1 Introduction
  • 9.2 Papaya Fruit
  • 9.2.1 Cultivation
  • 9.2.2 Production and Economy
  • 9.2.3 Consumption
  • 9.2.4 Nutritional Value
  • 9.3 Importance of Papaya in Food Security.
  • 9.4 Postharvest Losses
  • 9.5 Storage of Papaya
  • 9.6 Fruit Quality and Shelf‐life Enhancement
  • 9.7 Hexanal‐based Technologies for Papaya
  • Acknowledgment
  • References
  • Chapter 10 Effect of Hexanal Composition Treatment on Wine Grape Quality
  • 10.1 Introduction
  • 10.1.1 Wine Grapes: Production Factors
  • 10.1.2 Quality‐determining Features of Wine Grapes
  • 10.2 Experimental Protocols
  • 10.2.1 Growth Conditions
  • 10.2.2 Production of Inoculum
  • 10.2.3 Wine Processing
  • 10.2.4 Quality Attributes of Musts and Wines
  • 10.3 Observations
  • 10.3.1 Properties of Must and Wine
  • 10.3.2 Wine Quality Attributes
  • 10.3.3 Surface Morphology of Grapes
  • References
  • Chapter 11 Benefits of Application of Hexanal Compositions on Apples
  • 11.1 Introduction
  • 11.2 Preharvest Spray of Hexanal Compositions in Reducing Apple Fruit Drop
  • 11.3 Prevention of Superficial Scald in Apples
  • 11.4 Effects of Preharvest Spray Treatment of Honeycrisp Apples with Hexanal Formulation
  • 11.4.1 Postharvest Quality of Honeycrisp
  • References
  • Chapter 12 Preharvest Spray Application of Blueberry Fruits with Hexanal Formulations Improves Fruit Shelf‐life and Quality
  • 12.1 Introduction
  • 12.2 Quality‐determining Features of Berries
  • 12.3 Common Blueberry Postharvest Issues
  • 12.3.1 Ideal Storage Conditions
  • 12.3.2 Postharvest Technologies
  • 12.4 Experimental Protocols
  • 12.4.1 Preharvest Spray Applications
  • 12.4.2 Postharvest Storage of Blueberry
  • 12.4.3 Fruit Quality Analysis
  • 12.4.4 Statistical Analysis
  • 12.5 Observations
  • 12.5.1 Fruit Quality
  • 12.5.2 Physiological Weight Loss and Quality of Stored Fruit
  • References
  • Chapter 13 Improving Shelf‐life and Quality of Sweet Cherry (Prunus avium L.) by Preharvest Application of Hexanal Compositions
  • 13.1 Introduction
  • 13.2 Quality‐determining Features of Sweet Cherries.
  • 13.3 Technologies to Enhance Postharvest Quality of Sweet Cherry
  • 13.4 Experimental Protocols
  • 13.4.1 Preharvest Spray Treatments
  • 13.4.2 Postharvest Treatments
  • 13.5 Observations
  • 13.5.1 Effect of Preharvest and Postharvest Treatments on Sweet Cherry Fruit Quality
  • 13.5.2 Effect of Preharvest and Postharvest Treatments on Total Polyphenolic Content and Anthocyanin Components
  • 13.5.3 Antioxidant Enzyme Activities
  • References
  • Chapter 14 Hexanal Effects on Greenhouse Vegetables
  • 14.1 Introduction
  • 14.2 Postharvest Losses and Issues
  • 14.3 Current Technologies Used for Storage
  • 14.3.1 Bell Pepper
  • 14.3.2 Tomatoes
  • 14.4 Experimental Protocols
  • 14.4.1 Preharvest Application of Hexanal‐Containing Sprays on Greenhouse Tomato Fruit
  • 14.4.2 Postharvest Application of Hexanal and EFF Dip Treatments of Tomato Fruit
  • 14.4.3 Postharvest Application of Hexanal Vapor on Bell Pepper Fruit
  • 14.4.4 Analysis of Quality Parameters
  • 14.5 Observations
  • 14.5.1 Effect of Preharvest Spray Treatments with Hexanal Formulations on Quality Parameters of Tomatoes
  • 14.5.2 Effect of Postharvest Dip Treatments in Hexanal Formulations on Quality Parameters of Tomatoes
  • 14.6 Effect of Postharvest Hexanal Vapor Application on Bell Pepper Fruit Shelf‐life, Ripening, and Postharvest Quality
  • 14.7 Conclusion
  • References
  • Chapter 15 Reduction of Preharvest and Postharvest Losses of Sweet Orange (Citrus sinensis L. Osberck) Using Hexanal in Eastern Tanzania
  • 15.1 Introduction
  • 15.2 Socioeconomic Importance and Production of Sweet Orange in Tanzania
  • 15.3 Constraints to Sweet Orange Production and Postharvest Handling
  • 15.4 Field and Laboratory Tests on Effectiveness of Hexanal
  • 15.4.1 Effects of Preharvest Treatment with Hexanal on Preharvest Fruit Drop, Marketability, and Pest Damage of Sweet Oranges.
  • 15.4.2 Effect of Postharvest Treatment with Hexanal Formulation on Postharvest Quality of Orange Fruit.