Photonic Neural Networks with Spatiotemporal Dynamics : : Paradigms of Computing and Implementation.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer,, 2023.
©2024.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (277 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Introduction
  • Revival of Optical Computing
  • 1 Introduction
  • 2 Fourier Optical Processing
  • 3 Digital Optical Computing
  • 4 Optical Neurocomputing
  • 5 Optical Special Purpose Processing
  • 6 Nanophotonic Computing
  • 7 Toward Further Extension
  • References
  • Nonlinear Dynamics and Computing in Recurrent Neural Networks
  • 1 Introduction
  • 2 Fundamental RNN Models and Energy Function
  • 2.1 Amari-Hopfield Network with Binary States
  • 2.2 Amari-Hopfield Network with Continuous States
  • 2.3 Boltzmann Machine
  • 3 Nonlinear Dynamics in Symmetrically Connected RNNs
  • 3.1 Chaotic Neural Network
  • 3.2 Chaotic Boltzmann Machine
  • 3.3 Ising Machines
  • 3.4 Herding System
  • 4 Reservoir Computing
  • 4.1 Training Input-Output Relation of RNNs
  • 4.2 Echo State Network
  • 4.3 Echo State Property and Reservoir Design
  • 4.4 Neural Network Reservoirs
  • 4.5 Physical Reservoir Computing
  • 5 Towards Photonic Neural Network Computing
  • References
  • Fluorescence Energy Transfer Computing
  • Fluorescence Energy Transfer Computing
  • 1 Fluorescence Energy Transfer
  • 2 FRET-Based Device
  • 2.1 DNA for FRET Devices
  • 2.2 FRET-Based Photonic Wire
  • 2.3 FRET-Based Photonic Switch
  • 2.4 FRET-Based Logic Gate
  • 3 Scaffold DNA Logic
  • 3.1 Basic Concept
  • 3.2 Arrangement Control of Fluorescent Molecules
  • 3.3 Design of Logic Operations
  • 3.4 AND Operation
  • 3.5 OR Operation
  • 3.6 NOT Operation
  • 3.7 Extended FRET Connection
  • 4 Optical Program of DNA Scaffold Logic
  • 4.1 Optical Control of FRET
  • 4.2 Optical Control of FRET Pathway
  • 4.3 Optically Programmable DNA Scaffold Logic
  • 5 FRET Network-Based Computation
  • References
  • Quantum-Dot-Based Photonic Reservoir Computing
  • 1 Introduction
  • 2 Quantum-Dot-Based Physical Reservoir
  • 2.1 Basics
  • 2.2 Experimental Demonstration: Randomly-Dispersed QDR.
  • 2.3 Experimental Demonstration: Electrophoresis
  • 3 Non-linearity of the QD Reservoir
  • 3.1 Experimental Setup
  • 3.2 Qualitative Non-linearity
  • 4 Spatio-Temporal Photonic Processing
  • 4.1 Basics
  • 4.2 Streak Measurement
  • 4.3 Spatiotemporal Reservoir Model
  • 4.4 Experimental Demonstration
  • 5 Conclusion and Future Prospect
  • References
  • Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing
  • 1 Introduction
  • 2 Proposed Device Structure
  • 2.1 Device Structure
  • 2.2 Network Mapping
  • 2.3 Experiments
  • 3 Proof-of-Concept Prototyping
  • 3.1 Implementation
  • 3.2 Evaluation
  • 4 Discussion on Energy Advantage
  • 4.1 Power Estimation Approach
  • 4.2 Result
  • 5 Summary
  • References
  • FRET Networks: Modeling and Analysis for Computing
  • 1 Introduction
  • 2 Spatiotemporal Model for FRET Networks
  • 2.1 Multiple-Donor Model
  • 2.2 Analytical Results
  • 3 Simulation Methods
  • 3.1 Deterministic Simulation
  • 3.2 Stochastic Simulation
  • 3.3 Comparison Between Deterministic and Stochastic Simulation
  • 4 Information Processing Using FRET Networks
  • 4.1 Nonlinear Function Approximation
  • 4.2 Chaotic Time-Series Prediction
  • 4.3 Handwritten Digit Recognition
  • 5 Conclusions and Future Works
  • References
  • Quantum Walk on FRET Networks
  • 1 Introduction of Quantum Walk
  • 1.1 Classical Random Walk
  • 1.2 Quantum Walk
  • 1.3 Quantum Walk on FRET Networks
  • 2 Application of Quantum Walk
  • 2.1 Classical Parton Shower
  • 2.2 Quantum Parton Shower Algorithm
  • 3 Conclusion
  • References
  • Spatial-Photonic Spin System
  • Spatial Photonic Ising Machine with Time/Space Division Multiplexing
  • 1 Introduction
  • 2 Spatial Photonic Ising Machine with Multiplexing
  • 2.1 Basic Scheme of SPIM
  • 2.2 Concept of SPIMs with Multiplexing
  • 3 Time Division Multiplexed (TDM)-SPIM.
  • 4 Space Division Multiplexing (SDM)-SPIM
  • 5 Conclusion
  • References
  • Investigation on Oscillator-Based Ising Machines
  • 1 Introduction
  • 2 Ising Model and Ising Machines
  • 3 Oscillator-Based Ising Machines
  • 3.1 Phase Oscillators
  • 3.2 Second-Harmonic Injection Locking
  • 3.3 Kuramoto Model
  • 3.4 Gradient Structure of the Kuramoto Model
  • 3.5 Working Principle of OIMs
  • 4 Experiments
  • 4.1 MAX-CUT Problem
  • 4.2 Experimental Setting and Evaluation Metrics
  • 4.3 Effect of Properties of Noisy Fluctuation and Coarse Time Discretization
  • 4.4 Effect of Injection and Noise Strength
  • 4.5 Effect of Higher Harmonics in Coupling and Injection Schemes
  • 5 Summary
  • References
  • Sampling-Like Dynamics of the Nonlinear Dynamical System Combined with Optimization
  • 1 Herding: Sample Generation Using Nonlinear Dynamics and Monte Carlo Integration
  • 1.1 Deterministic Tossup
  • 1.2 Herding
  • 1.3 Convergence of Herding
  • 2 Herded Gibbs: Model-Based Herding on Spin System
  • 2.1 Markov Chain Monte Carlo Method
  • 2.2 Herded Gibbs
  • 2.3 Sharing Weight Variables
  • 2.4 Monte Carlo Integration Using HG
  • 2.5 Rao-Blackwellization
  • 3 Entropic Herding: Regularizer for Dynamical Sampling
  • 3.1 Maximum Entropy Principle
  • 3.2 Entropic Herding
  • 3.3 Dynamical Entropic Maximization in Herding
  • 3.4 Other Notes on Entropic Herding
  • 4 Discussion
  • 4.1 Application of Physical Combinatorial Optimization Using Herding
  • 4.2 Generative Models and Herding
  • 5 Conclusion
  • References
  • Photonic Reservoir Computing
  • Reservoir Computing Based on Iterative Function Systems
  • 1 Introduction
  • 2 Iterative Function Systems
  • 3 Iterative Function System-Based Reservoir Computing
  • 4 Prediction Performance of IFSRC
  • 4.1 Multi-step Ahead Prediction
  • 4.2 Single-Step Ahead Prediction of Santa Fe Time-Series Data.
  • 5 Experimental Performance of IFS Reservoir Computing
  • 5.1 Optical Setup
  • 5.2 Multi-step Ahead Prediction of Mackey-Glass Equation
  • 5.3 Single-step Ahead Prediction of Santa Fe Time-Series Data
  • 6 Relationship Between Performance and Spectral Radius
  • 7 IFS Reservoir Computing with Optical Feedback Loop
  • 8 Discussion
  • References
  • Bridging the Gap Between Reservoirs and Neural Networks
  • 1 Introduction
  • 2 Background
  • 2.1 Lottery Ticket Hypotheses
  • 2.2 Residual Neural Networks
  • 3 Hidden-Fold Networks
  • 3.1 Folded ResNet Architecture
  • 3.2 Supermask Training
  • 4 Experiments and Results
  • 4.1 Experimental Settings
  • 4.2 Results
  • 5 Summary
  • References
  • Brain-Inspired Reservoir Computing Models
  • 1 Introduction
  • 2 Reservoir-Based Predictive Coding Model
  • 3 Reservoir-Based Reinforcement Learning Model
  • 4 Integrated Model and Mental simulation
  • 5 Summary
  • References.