Photonic Neural Networks with Spatiotemporal Dynamics : : Paradigms of Computing and Implementation.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer,, 2023.
©2024.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (277 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030882937
ctrlnum (MiAaPQ)50030882937
(Au-PeEL)EBL30882937
(OCoLC)1409705951
collection bib_alma
record_format marc
spelling Suzuki, Hideyuki.
Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
1st ed.
Singapore : Springer, 2023.
©2024.
1 online resource (277 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Contents -- Introduction -- Revival of Optical Computing -- 1 Introduction -- 2 Fourier Optical Processing -- 3 Digital Optical Computing -- 4 Optical Neurocomputing -- 5 Optical Special Purpose Processing -- 6 Nanophotonic Computing -- 7 Toward Further Extension -- References -- Nonlinear Dynamics and Computing in Recurrent Neural Networks -- 1 Introduction -- 2 Fundamental RNN Models and Energy Function -- 2.1 Amari-Hopfield Network with Binary States -- 2.2 Amari-Hopfield Network with Continuous States -- 2.3 Boltzmann Machine -- 3 Nonlinear Dynamics in Symmetrically Connected RNNs -- 3.1 Chaotic Neural Network -- 3.2 Chaotic Boltzmann Machine -- 3.3 Ising Machines -- 3.4 Herding System -- 4 Reservoir Computing -- 4.1 Training Input-Output Relation of RNNs -- 4.2 Echo State Network -- 4.3 Echo State Property and Reservoir Design -- 4.4 Neural Network Reservoirs -- 4.5 Physical Reservoir Computing -- 5 Towards Photonic Neural Network Computing -- References -- Fluorescence Energy Transfer Computing -- Fluorescence Energy Transfer Computing -- 1 Fluorescence Energy Transfer -- 2 FRET-Based Device -- 2.1 DNA for FRET Devices -- 2.2 FRET-Based Photonic Wire -- 2.3 FRET-Based Photonic Switch -- 2.4 FRET-Based Logic Gate -- 3 Scaffold DNA Logic -- 3.1 Basic Concept -- 3.2 Arrangement Control of Fluorescent Molecules -- 3.3 Design of Logic Operations -- 3.4 AND Operation -- 3.5 OR Operation -- 3.6 NOT Operation -- 3.7 Extended FRET Connection -- 4 Optical Program of DNA Scaffold Logic -- 4.1 Optical Control of FRET -- 4.2 Optical Control of FRET Pathway -- 4.3 Optically Programmable DNA Scaffold Logic -- 5 FRET Network-Based Computation -- References -- Quantum-Dot-Based Photonic Reservoir Computing -- 1 Introduction -- 2 Quantum-Dot-Based Physical Reservoir -- 2.1 Basics -- 2.2 Experimental Demonstration: Randomly-Dispersed QDR.
2.3 Experimental Demonstration: Electrophoresis -- 3 Non-linearity of the QD Reservoir -- 3.1 Experimental Setup -- 3.2 Qualitative Non-linearity -- 4 Spatio-Temporal Photonic Processing -- 4.1 Basics -- 4.2 Streak Measurement -- 4.3 Spatiotemporal Reservoir Model -- 4.4 Experimental Demonstration -- 5 Conclusion and Future Prospect -- References -- Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing -- 1 Introduction -- 2 Proposed Device Structure -- 2.1 Device Structure -- 2.2 Network Mapping -- 2.3 Experiments -- 3 Proof-of-Concept Prototyping -- 3.1 Implementation -- 3.2 Evaluation -- 4 Discussion on Energy Advantage -- 4.1 Power Estimation Approach -- 4.2 Result -- 5 Summary -- References -- FRET Networks: Modeling and Analysis for Computing -- 1 Introduction -- 2 Spatiotemporal Model for FRET Networks -- 2.1 Multiple-Donor Model -- 2.2 Analytical Results -- 3 Simulation Methods -- 3.1 Deterministic Simulation -- 3.2 Stochastic Simulation -- 3.3 Comparison Between Deterministic and Stochastic Simulation -- 4 Information Processing Using FRET Networks -- 4.1 Nonlinear Function Approximation -- 4.2 Chaotic Time-Series Prediction -- 4.3 Handwritten Digit Recognition -- 5 Conclusions and Future Works -- References -- Quantum Walk on FRET Networks -- 1 Introduction of Quantum Walk -- 1.1 Classical Random Walk -- 1.2 Quantum Walk -- 1.3 Quantum Walk on FRET Networks -- 2 Application of Quantum Walk -- 2.1 Classical Parton Shower -- 2.2 Quantum Parton Shower Algorithm -- 3 Conclusion -- References -- Spatial-Photonic Spin System -- Spatial Photonic Ising Machine with Time/Space Division Multiplexing -- 1 Introduction -- 2 Spatial Photonic Ising Machine with Multiplexing -- 2.1 Basic Scheme of SPIM -- 2.2 Concept of SPIMs with Multiplexing -- 3 Time Division Multiplexed (TDM)-SPIM.
4 Space Division Multiplexing (SDM)-SPIM -- 5 Conclusion -- References -- Investigation on Oscillator-Based Ising Machines -- 1 Introduction -- 2 Ising Model and Ising Machines -- 3 Oscillator-Based Ising Machines -- 3.1 Phase Oscillators -- 3.2 Second-Harmonic Injection Locking -- 3.3 Kuramoto Model -- 3.4 Gradient Structure of the Kuramoto Model -- 3.5 Working Principle of OIMs -- 4 Experiments -- 4.1 MAX-CUT Problem -- 4.2 Experimental Setting and Evaluation Metrics -- 4.3 Effect of Properties of Noisy Fluctuation and Coarse Time Discretization -- 4.4 Effect of Injection and Noise Strength -- 4.5 Effect of Higher Harmonics in Coupling and Injection Schemes -- 5 Summary -- References -- Sampling-Like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- 1 Herding: Sample Generation Using Nonlinear Dynamics and Monte Carlo Integration -- 1.1 Deterministic Tossup -- 1.2 Herding -- 1.3 Convergence of Herding -- 2 Herded Gibbs: Model-Based Herding on Spin System -- 2.1 Markov Chain Monte Carlo Method -- 2.2 Herded Gibbs -- 2.3 Sharing Weight Variables -- 2.4 Monte Carlo Integration Using HG -- 2.5 Rao-Blackwellization -- 3 Entropic Herding: Regularizer for Dynamical Sampling -- 3.1 Maximum Entropy Principle -- 3.2 Entropic Herding -- 3.3 Dynamical Entropic Maximization in Herding -- 3.4 Other Notes on Entropic Herding -- 4 Discussion -- 4.1 Application of Physical Combinatorial Optimization Using Herding -- 4.2 Generative Models and Herding -- 5 Conclusion -- References -- Photonic Reservoir Computing -- Reservoir Computing Based on Iterative Function Systems -- 1 Introduction -- 2 Iterative Function Systems -- 3 Iterative Function System-Based Reservoir Computing -- 4 Prediction Performance of IFSRC -- 4.1 Multi-step Ahead Prediction -- 4.2 Single-Step Ahead Prediction of Santa Fe Time-Series Data.
5 Experimental Performance of IFS Reservoir Computing -- 5.1 Optical Setup -- 5.2 Multi-step Ahead Prediction of Mackey-Glass Equation -- 5.3 Single-step Ahead Prediction of Santa Fe Time-Series Data -- 6 Relationship Between Performance and Spectral Radius -- 7 IFS Reservoir Computing with Optical Feedback Loop -- 8 Discussion -- References -- Bridging the Gap Between Reservoirs and Neural Networks -- 1 Introduction -- 2 Background -- 2.1 Lottery Ticket Hypotheses -- 2.2 Residual Neural Networks -- 3 Hidden-Fold Networks -- 3.1 Folded ResNet Architecture -- 3.2 Supermask Training -- 4 Experiments and Results -- 4.1 Experimental Settings -- 4.2 Results -- 5 Summary -- References -- Brain-Inspired Reservoir Computing Models -- 1 Introduction -- 2 Reservoir-Based Predictive Coding Model -- 3 Reservoir-Based Reinforcement Learning Model -- 4 Integrated Model and Mental simulation -- 5 Summary -- References.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Tanida, Jun.
Hashimoto, Masanori.
Print version: Suzuki, Hideyuki Photonic Neural Networks with Spatiotemporal Dynamics Singapore : Springer,c2023 9789819950713
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30882937 Click to View
language English
format eBook
author Suzuki, Hideyuki.
spellingShingle Suzuki, Hideyuki.
Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
Intro -- Preface -- Contents -- Introduction -- Revival of Optical Computing -- 1 Introduction -- 2 Fourier Optical Processing -- 3 Digital Optical Computing -- 4 Optical Neurocomputing -- 5 Optical Special Purpose Processing -- 6 Nanophotonic Computing -- 7 Toward Further Extension -- References -- Nonlinear Dynamics and Computing in Recurrent Neural Networks -- 1 Introduction -- 2 Fundamental RNN Models and Energy Function -- 2.1 Amari-Hopfield Network with Binary States -- 2.2 Amari-Hopfield Network with Continuous States -- 2.3 Boltzmann Machine -- 3 Nonlinear Dynamics in Symmetrically Connected RNNs -- 3.1 Chaotic Neural Network -- 3.2 Chaotic Boltzmann Machine -- 3.3 Ising Machines -- 3.4 Herding System -- 4 Reservoir Computing -- 4.1 Training Input-Output Relation of RNNs -- 4.2 Echo State Network -- 4.3 Echo State Property and Reservoir Design -- 4.4 Neural Network Reservoirs -- 4.5 Physical Reservoir Computing -- 5 Towards Photonic Neural Network Computing -- References -- Fluorescence Energy Transfer Computing -- Fluorescence Energy Transfer Computing -- 1 Fluorescence Energy Transfer -- 2 FRET-Based Device -- 2.1 DNA for FRET Devices -- 2.2 FRET-Based Photonic Wire -- 2.3 FRET-Based Photonic Switch -- 2.4 FRET-Based Logic Gate -- 3 Scaffold DNA Logic -- 3.1 Basic Concept -- 3.2 Arrangement Control of Fluorescent Molecules -- 3.3 Design of Logic Operations -- 3.4 AND Operation -- 3.5 OR Operation -- 3.6 NOT Operation -- 3.7 Extended FRET Connection -- 4 Optical Program of DNA Scaffold Logic -- 4.1 Optical Control of FRET -- 4.2 Optical Control of FRET Pathway -- 4.3 Optically Programmable DNA Scaffold Logic -- 5 FRET Network-Based Computation -- References -- Quantum-Dot-Based Photonic Reservoir Computing -- 1 Introduction -- 2 Quantum-Dot-Based Physical Reservoir -- 2.1 Basics -- 2.2 Experimental Demonstration: Randomly-Dispersed QDR.
2.3 Experimental Demonstration: Electrophoresis -- 3 Non-linearity of the QD Reservoir -- 3.1 Experimental Setup -- 3.2 Qualitative Non-linearity -- 4 Spatio-Temporal Photonic Processing -- 4.1 Basics -- 4.2 Streak Measurement -- 4.3 Spatiotemporal Reservoir Model -- 4.4 Experimental Demonstration -- 5 Conclusion and Future Prospect -- References -- Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing -- 1 Introduction -- 2 Proposed Device Structure -- 2.1 Device Structure -- 2.2 Network Mapping -- 2.3 Experiments -- 3 Proof-of-Concept Prototyping -- 3.1 Implementation -- 3.2 Evaluation -- 4 Discussion on Energy Advantage -- 4.1 Power Estimation Approach -- 4.2 Result -- 5 Summary -- References -- FRET Networks: Modeling and Analysis for Computing -- 1 Introduction -- 2 Spatiotemporal Model for FRET Networks -- 2.1 Multiple-Donor Model -- 2.2 Analytical Results -- 3 Simulation Methods -- 3.1 Deterministic Simulation -- 3.2 Stochastic Simulation -- 3.3 Comparison Between Deterministic and Stochastic Simulation -- 4 Information Processing Using FRET Networks -- 4.1 Nonlinear Function Approximation -- 4.2 Chaotic Time-Series Prediction -- 4.3 Handwritten Digit Recognition -- 5 Conclusions and Future Works -- References -- Quantum Walk on FRET Networks -- 1 Introduction of Quantum Walk -- 1.1 Classical Random Walk -- 1.2 Quantum Walk -- 1.3 Quantum Walk on FRET Networks -- 2 Application of Quantum Walk -- 2.1 Classical Parton Shower -- 2.2 Quantum Parton Shower Algorithm -- 3 Conclusion -- References -- Spatial-Photonic Spin System -- Spatial Photonic Ising Machine with Time/Space Division Multiplexing -- 1 Introduction -- 2 Spatial Photonic Ising Machine with Multiplexing -- 2.1 Basic Scheme of SPIM -- 2.2 Concept of SPIMs with Multiplexing -- 3 Time Division Multiplexed (TDM)-SPIM.
4 Space Division Multiplexing (SDM)-SPIM -- 5 Conclusion -- References -- Investigation on Oscillator-Based Ising Machines -- 1 Introduction -- 2 Ising Model and Ising Machines -- 3 Oscillator-Based Ising Machines -- 3.1 Phase Oscillators -- 3.2 Second-Harmonic Injection Locking -- 3.3 Kuramoto Model -- 3.4 Gradient Structure of the Kuramoto Model -- 3.5 Working Principle of OIMs -- 4 Experiments -- 4.1 MAX-CUT Problem -- 4.2 Experimental Setting and Evaluation Metrics -- 4.3 Effect of Properties of Noisy Fluctuation and Coarse Time Discretization -- 4.4 Effect of Injection and Noise Strength -- 4.5 Effect of Higher Harmonics in Coupling and Injection Schemes -- 5 Summary -- References -- Sampling-Like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- 1 Herding: Sample Generation Using Nonlinear Dynamics and Monte Carlo Integration -- 1.1 Deterministic Tossup -- 1.2 Herding -- 1.3 Convergence of Herding -- 2 Herded Gibbs: Model-Based Herding on Spin System -- 2.1 Markov Chain Monte Carlo Method -- 2.2 Herded Gibbs -- 2.3 Sharing Weight Variables -- 2.4 Monte Carlo Integration Using HG -- 2.5 Rao-Blackwellization -- 3 Entropic Herding: Regularizer for Dynamical Sampling -- 3.1 Maximum Entropy Principle -- 3.2 Entropic Herding -- 3.3 Dynamical Entropic Maximization in Herding -- 3.4 Other Notes on Entropic Herding -- 4 Discussion -- 4.1 Application of Physical Combinatorial Optimization Using Herding -- 4.2 Generative Models and Herding -- 5 Conclusion -- References -- Photonic Reservoir Computing -- Reservoir Computing Based on Iterative Function Systems -- 1 Introduction -- 2 Iterative Function Systems -- 3 Iterative Function System-Based Reservoir Computing -- 4 Prediction Performance of IFSRC -- 4.1 Multi-step Ahead Prediction -- 4.2 Single-Step Ahead Prediction of Santa Fe Time-Series Data.
5 Experimental Performance of IFS Reservoir Computing -- 5.1 Optical Setup -- 5.2 Multi-step Ahead Prediction of Mackey-Glass Equation -- 5.3 Single-step Ahead Prediction of Santa Fe Time-Series Data -- 6 Relationship Between Performance and Spectral Radius -- 7 IFS Reservoir Computing with Optical Feedback Loop -- 8 Discussion -- References -- Bridging the Gap Between Reservoirs and Neural Networks -- 1 Introduction -- 2 Background -- 2.1 Lottery Ticket Hypotheses -- 2.2 Residual Neural Networks -- 3 Hidden-Fold Networks -- 3.1 Folded ResNet Architecture -- 3.2 Supermask Training -- 4 Experiments and Results -- 4.1 Experimental Settings -- 4.2 Results -- 5 Summary -- References -- Brain-Inspired Reservoir Computing Models -- 1 Introduction -- 2 Reservoir-Based Predictive Coding Model -- 3 Reservoir-Based Reinforcement Learning Model -- 4 Integrated Model and Mental simulation -- 5 Summary -- References.
author_facet Suzuki, Hideyuki.
Tanida, Jun.
Hashimoto, Masanori.
author_variant h s hs
author2 Tanida, Jun.
Hashimoto, Masanori.
author2_variant j t jt
m h mh
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Suzuki, Hideyuki.
title Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
title_sub Paradigms of Computing and Implementation.
title_full Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
title_fullStr Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
title_full_unstemmed Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
title_auth Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
title_new Photonic Neural Networks with Spatiotemporal Dynamics :
title_sort photonic neural networks with spatiotemporal dynamics : paradigms of computing and implementation.
publisher Springer,
publishDate 2023
physical 1 online resource (277 pages)
edition 1st ed.
contents Intro -- Preface -- Contents -- Introduction -- Revival of Optical Computing -- 1 Introduction -- 2 Fourier Optical Processing -- 3 Digital Optical Computing -- 4 Optical Neurocomputing -- 5 Optical Special Purpose Processing -- 6 Nanophotonic Computing -- 7 Toward Further Extension -- References -- Nonlinear Dynamics and Computing in Recurrent Neural Networks -- 1 Introduction -- 2 Fundamental RNN Models and Energy Function -- 2.1 Amari-Hopfield Network with Binary States -- 2.2 Amari-Hopfield Network with Continuous States -- 2.3 Boltzmann Machine -- 3 Nonlinear Dynamics in Symmetrically Connected RNNs -- 3.1 Chaotic Neural Network -- 3.2 Chaotic Boltzmann Machine -- 3.3 Ising Machines -- 3.4 Herding System -- 4 Reservoir Computing -- 4.1 Training Input-Output Relation of RNNs -- 4.2 Echo State Network -- 4.3 Echo State Property and Reservoir Design -- 4.4 Neural Network Reservoirs -- 4.5 Physical Reservoir Computing -- 5 Towards Photonic Neural Network Computing -- References -- Fluorescence Energy Transfer Computing -- Fluorescence Energy Transfer Computing -- 1 Fluorescence Energy Transfer -- 2 FRET-Based Device -- 2.1 DNA for FRET Devices -- 2.2 FRET-Based Photonic Wire -- 2.3 FRET-Based Photonic Switch -- 2.4 FRET-Based Logic Gate -- 3 Scaffold DNA Logic -- 3.1 Basic Concept -- 3.2 Arrangement Control of Fluorescent Molecules -- 3.3 Design of Logic Operations -- 3.4 AND Operation -- 3.5 OR Operation -- 3.6 NOT Operation -- 3.7 Extended FRET Connection -- 4 Optical Program of DNA Scaffold Logic -- 4.1 Optical Control of FRET -- 4.2 Optical Control of FRET Pathway -- 4.3 Optically Programmable DNA Scaffold Logic -- 5 FRET Network-Based Computation -- References -- Quantum-Dot-Based Photonic Reservoir Computing -- 1 Introduction -- 2 Quantum-Dot-Based Physical Reservoir -- 2.1 Basics -- 2.2 Experimental Demonstration: Randomly-Dispersed QDR.
2.3 Experimental Demonstration: Electrophoresis -- 3 Non-linearity of the QD Reservoir -- 3.1 Experimental Setup -- 3.2 Qualitative Non-linearity -- 4 Spatio-Temporal Photonic Processing -- 4.1 Basics -- 4.2 Streak Measurement -- 4.3 Spatiotemporal Reservoir Model -- 4.4 Experimental Demonstration -- 5 Conclusion and Future Prospect -- References -- Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing -- 1 Introduction -- 2 Proposed Device Structure -- 2.1 Device Structure -- 2.2 Network Mapping -- 2.3 Experiments -- 3 Proof-of-Concept Prototyping -- 3.1 Implementation -- 3.2 Evaluation -- 4 Discussion on Energy Advantage -- 4.1 Power Estimation Approach -- 4.2 Result -- 5 Summary -- References -- FRET Networks: Modeling and Analysis for Computing -- 1 Introduction -- 2 Spatiotemporal Model for FRET Networks -- 2.1 Multiple-Donor Model -- 2.2 Analytical Results -- 3 Simulation Methods -- 3.1 Deterministic Simulation -- 3.2 Stochastic Simulation -- 3.3 Comparison Between Deterministic and Stochastic Simulation -- 4 Information Processing Using FRET Networks -- 4.1 Nonlinear Function Approximation -- 4.2 Chaotic Time-Series Prediction -- 4.3 Handwritten Digit Recognition -- 5 Conclusions and Future Works -- References -- Quantum Walk on FRET Networks -- 1 Introduction of Quantum Walk -- 1.1 Classical Random Walk -- 1.2 Quantum Walk -- 1.3 Quantum Walk on FRET Networks -- 2 Application of Quantum Walk -- 2.1 Classical Parton Shower -- 2.2 Quantum Parton Shower Algorithm -- 3 Conclusion -- References -- Spatial-Photonic Spin System -- Spatial Photonic Ising Machine with Time/Space Division Multiplexing -- 1 Introduction -- 2 Spatial Photonic Ising Machine with Multiplexing -- 2.1 Basic Scheme of SPIM -- 2.2 Concept of SPIMs with Multiplexing -- 3 Time Division Multiplexed (TDM)-SPIM.
4 Space Division Multiplexing (SDM)-SPIM -- 5 Conclusion -- References -- Investigation on Oscillator-Based Ising Machines -- 1 Introduction -- 2 Ising Model and Ising Machines -- 3 Oscillator-Based Ising Machines -- 3.1 Phase Oscillators -- 3.2 Second-Harmonic Injection Locking -- 3.3 Kuramoto Model -- 3.4 Gradient Structure of the Kuramoto Model -- 3.5 Working Principle of OIMs -- 4 Experiments -- 4.1 MAX-CUT Problem -- 4.2 Experimental Setting and Evaluation Metrics -- 4.3 Effect of Properties of Noisy Fluctuation and Coarse Time Discretization -- 4.4 Effect of Injection and Noise Strength -- 4.5 Effect of Higher Harmonics in Coupling and Injection Schemes -- 5 Summary -- References -- Sampling-Like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- 1 Herding: Sample Generation Using Nonlinear Dynamics and Monte Carlo Integration -- 1.1 Deterministic Tossup -- 1.2 Herding -- 1.3 Convergence of Herding -- 2 Herded Gibbs: Model-Based Herding on Spin System -- 2.1 Markov Chain Monte Carlo Method -- 2.2 Herded Gibbs -- 2.3 Sharing Weight Variables -- 2.4 Monte Carlo Integration Using HG -- 2.5 Rao-Blackwellization -- 3 Entropic Herding: Regularizer for Dynamical Sampling -- 3.1 Maximum Entropy Principle -- 3.2 Entropic Herding -- 3.3 Dynamical Entropic Maximization in Herding -- 3.4 Other Notes on Entropic Herding -- 4 Discussion -- 4.1 Application of Physical Combinatorial Optimization Using Herding -- 4.2 Generative Models and Herding -- 5 Conclusion -- References -- Photonic Reservoir Computing -- Reservoir Computing Based on Iterative Function Systems -- 1 Introduction -- 2 Iterative Function Systems -- 3 Iterative Function System-Based Reservoir Computing -- 4 Prediction Performance of IFSRC -- 4.1 Multi-step Ahead Prediction -- 4.2 Single-Step Ahead Prediction of Santa Fe Time-Series Data.
5 Experimental Performance of IFS Reservoir Computing -- 5.1 Optical Setup -- 5.2 Multi-step Ahead Prediction of Mackey-Glass Equation -- 5.3 Single-step Ahead Prediction of Santa Fe Time-Series Data -- 6 Relationship Between Performance and Spectral Radius -- 7 IFS Reservoir Computing with Optical Feedback Loop -- 8 Discussion -- References -- Bridging the Gap Between Reservoirs and Neural Networks -- 1 Introduction -- 2 Background -- 2.1 Lottery Ticket Hypotheses -- 2.2 Residual Neural Networks -- 3 Hidden-Fold Networks -- 3.1 Folded ResNet Architecture -- 3.2 Supermask Training -- 4 Experiments and Results -- 4.1 Experimental Settings -- 4.2 Results -- 5 Summary -- References -- Brain-Inspired Reservoir Computing Models -- 1 Introduction -- 2 Reservoir-Based Predictive Coding Model -- 3 Reservoir-Based Reinforcement Learning Model -- 4 Integrated Model and Mental simulation -- 5 Summary -- References.
isbn 9789819950720
9789819950713
callnumber-first Q - Science
callnumber-subject Q - General Science
callnumber-label Q334-342
callnumber-sort Q 3334 3342
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30882937
illustrated Not Illustrated
oclc_num 1409705951
work_keys_str_mv AT suzukihideyuki photonicneuralnetworkswithspatiotemporaldynamicsparadigmsofcomputingandimplementation
AT tanidajun photonicneuralnetworkswithspatiotemporaldynamicsparadigmsofcomputingandimplementation
AT hashimotomasanori photonicneuralnetworkswithspatiotemporaldynamicsparadigmsofcomputingandimplementation
status_str n
ids_txt_mv (MiAaPQ)50030882937
(Au-PeEL)EBL30882937
(OCoLC)1409705951
carrierType_str_mv cr
is_hierarchy_title Photonic Neural Networks with Spatiotemporal Dynamics : Paradigms of Computing and Implementation.
author2_original_writing_str_mv noLinkedField
noLinkedField
marc_error Info : MARC8 translation shorter than ISO-8859-1, choosing MARC8. --- [ 856 : z ]
_version_ 1792331073698398208
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08119nam a22004333i 4500</leader><controlfield tag="001">50030882937</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073851.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789819950720</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789819950713</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030882937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30882937</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1409705951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q334-342</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suzuki, Hideyuki.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Photonic Neural Networks with Spatiotemporal Dynamics :</subfield><subfield code="b">Paradigms of Computing and Implementation.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (277 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Contents -- Introduction -- Revival of Optical Computing -- 1 Introduction -- 2 Fourier Optical Processing -- 3 Digital Optical Computing -- 4 Optical Neurocomputing -- 5 Optical Special Purpose Processing -- 6 Nanophotonic Computing -- 7 Toward Further Extension -- References -- Nonlinear Dynamics and Computing in Recurrent Neural Networks -- 1 Introduction -- 2 Fundamental RNN Models and Energy Function -- 2.1 Amari-Hopfield Network with Binary States -- 2.2 Amari-Hopfield Network with Continuous States -- 2.3 Boltzmann Machine -- 3 Nonlinear Dynamics in Symmetrically Connected RNNs -- 3.1 Chaotic Neural Network -- 3.2 Chaotic Boltzmann Machine -- 3.3 Ising Machines -- 3.4 Herding System -- 4 Reservoir Computing -- 4.1 Training Input-Output Relation of RNNs -- 4.2 Echo State Network -- 4.3 Echo State Property and Reservoir Design -- 4.4 Neural Network Reservoirs -- 4.5 Physical Reservoir Computing -- 5 Towards Photonic Neural Network Computing -- References -- Fluorescence Energy Transfer Computing -- Fluorescence Energy Transfer Computing -- 1 Fluorescence Energy Transfer -- 2 FRET-Based Device -- 2.1 DNA for FRET Devices -- 2.2 FRET-Based Photonic Wire -- 2.3 FRET-Based Photonic Switch -- 2.4 FRET-Based Logic Gate -- 3 Scaffold DNA Logic -- 3.1 Basic Concept -- 3.2 Arrangement Control of Fluorescent Molecules -- 3.3 Design of Logic Operations -- 3.4 AND Operation -- 3.5 OR Operation -- 3.6 NOT Operation -- 3.7 Extended FRET Connection -- 4 Optical Program of DNA Scaffold Logic -- 4.1 Optical Control of FRET -- 4.2 Optical Control of FRET Pathway -- 4.3 Optically Programmable DNA Scaffold Logic -- 5 FRET Network-Based Computation -- References -- Quantum-Dot-Based Photonic Reservoir Computing -- 1 Introduction -- 2 Quantum-Dot-Based Physical Reservoir -- 2.1 Basics -- 2.2 Experimental Demonstration: Randomly-Dispersed QDR.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Experimental Demonstration: Electrophoresis -- 3 Non-linearity of the QD Reservoir -- 3.1 Experimental Setup -- 3.2 Qualitative Non-linearity -- 4 Spatio-Temporal Photonic Processing -- 4.1 Basics -- 4.2 Streak Measurement -- 4.3 Spatiotemporal Reservoir Model -- 4.4 Experimental Demonstration -- 5 Conclusion and Future Prospect -- References -- Exploring Integrated Device Implementation for FRET-Based Optical Reservoir Computing -- 1 Introduction -- 2 Proposed Device Structure -- 2.1 Device Structure -- 2.2 Network Mapping -- 2.3 Experiments -- 3 Proof-of-Concept Prototyping -- 3.1 Implementation -- 3.2 Evaluation -- 4 Discussion on Energy Advantage -- 4.1 Power Estimation Approach -- 4.2 Result -- 5 Summary -- References -- FRET Networks: Modeling and Analysis for Computing -- 1 Introduction -- 2 Spatiotemporal Model for FRET Networks -- 2.1 Multiple-Donor Model -- 2.2 Analytical Results -- 3 Simulation Methods -- 3.1 Deterministic Simulation -- 3.2 Stochastic Simulation -- 3.3 Comparison Between Deterministic and Stochastic Simulation -- 4 Information Processing Using FRET Networks -- 4.1 Nonlinear Function Approximation -- 4.2 Chaotic Time-Series Prediction -- 4.3 Handwritten Digit Recognition -- 5 Conclusions and Future Works -- References -- Quantum Walk on FRET Networks -- 1 Introduction of Quantum Walk -- 1.1 Classical Random Walk -- 1.2 Quantum Walk -- 1.3 Quantum Walk on FRET Networks -- 2 Application of Quantum Walk -- 2.1 Classical Parton Shower -- 2.2 Quantum Parton Shower Algorithm -- 3 Conclusion -- References -- Spatial-Photonic Spin System -- Spatial Photonic Ising Machine with Time/Space Division Multiplexing -- 1 Introduction -- 2 Spatial Photonic Ising Machine with Multiplexing -- 2.1 Basic Scheme of SPIM -- 2.2 Concept of SPIMs with Multiplexing -- 3 Time Division Multiplexed (TDM)-SPIM.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4 Space Division Multiplexing (SDM)-SPIM -- 5 Conclusion -- References -- Investigation on Oscillator-Based Ising Machines -- 1 Introduction -- 2 Ising Model and Ising Machines -- 3 Oscillator-Based Ising Machines -- 3.1 Phase Oscillators -- 3.2 Second-Harmonic Injection Locking -- 3.3 Kuramoto Model -- 3.4 Gradient Structure of the Kuramoto Model -- 3.5 Working Principle of OIMs -- 4 Experiments -- 4.1 MAX-CUT Problem -- 4.2 Experimental Setting and Evaluation Metrics -- 4.3 Effect of Properties of Noisy Fluctuation and Coarse Time Discretization -- 4.4 Effect of Injection and Noise Strength -- 4.5 Effect of Higher Harmonics in Coupling and Injection Schemes -- 5 Summary -- References -- Sampling-Like Dynamics of the Nonlinear Dynamical System Combined with Optimization -- 1 Herding: Sample Generation Using Nonlinear Dynamics and Monte Carlo Integration -- 1.1 Deterministic Tossup -- 1.2 Herding -- 1.3 Convergence of Herding -- 2 Herded Gibbs: Model-Based Herding on Spin System -- 2.1 Markov Chain Monte Carlo Method -- 2.2 Herded Gibbs -- 2.3 Sharing Weight Variables -- 2.4 Monte Carlo Integration Using HG -- 2.5 Rao-Blackwellization -- 3 Entropic Herding: Regularizer for Dynamical Sampling -- 3.1 Maximum Entropy Principle -- 3.2 Entropic Herding -- 3.3 Dynamical Entropic Maximization in Herding -- 3.4 Other Notes on Entropic Herding -- 4 Discussion -- 4.1 Application of Physical Combinatorial Optimization Using Herding -- 4.2 Generative Models and Herding -- 5 Conclusion -- References -- Photonic Reservoir Computing -- Reservoir Computing Based on Iterative Function Systems -- 1 Introduction -- 2 Iterative Function Systems -- 3 Iterative Function System-Based Reservoir Computing -- 4 Prediction Performance of IFSRC -- 4.1 Multi-step Ahead Prediction -- 4.2 Single-Step Ahead Prediction of Santa Fe Time-Series Data.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Experimental Performance of IFS Reservoir Computing -- 5.1 Optical Setup -- 5.2 Multi-step Ahead Prediction of Mackey-Glass Equation -- 5.3 Single-step Ahead Prediction of Santa Fe Time-Series Data -- 6 Relationship Between Performance and Spectral Radius -- 7 IFS Reservoir Computing with Optical Feedback Loop -- 8 Discussion -- References -- Bridging the Gap Between Reservoirs and Neural Networks -- 1 Introduction -- 2 Background -- 2.1 Lottery Ticket Hypotheses -- 2.2 Residual Neural Networks -- 3 Hidden-Fold Networks -- 3.1 Folded ResNet Architecture -- 3.2 Supermask Training -- 4 Experiments and Results -- 4.1 Experimental Settings -- 4.2 Results -- 5 Summary -- References -- Brain-Inspired Reservoir Computing Models -- 1 Introduction -- 2 Reservoir-Based Predictive Coding Model -- 3 Reservoir-Based Reinforcement Learning Model -- 4 Integrated Model and Mental simulation -- 5 Summary -- References.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tanida, Jun.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hashimoto, Masanori.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Suzuki, Hideyuki</subfield><subfield code="t">Photonic Neural Networks with Spatiotemporal Dynamics</subfield><subfield code="d">Singapore : Springer,c2023</subfield><subfield code="z">9789819950713</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30882937</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>