Hydraulic Fracturing and Rock Mechanics.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (269 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Contents
  • 1 Introduction
  • 1.1 Background
  • 1.2 Research Progress
  • 1.2.1 Initiation and Propagation of Hydraulic Fracture in Shale Reservoirs
  • 1.2.2 Model of the Intersection of Hydraulic and Natural Fracture
  • 1.2.3 Formation Mechanism of the Complicated Crack Network of Shale
  • 1.2.4 Existing Problems
  • References
  • Part I Theoretical Background
  • 2 Rock Mechanics in Hydraulic Fracturing Operations
  • 2.1 Stress
  • 2.2 Stain
  • 2.3 Linear Elastic Material and Its Failure
  • 2.4 Pressurized Crack
  • References
  • Part II Laboratory Observation
  • 3 Reservoir Characteristics
  • 3.1 Introduction
  • 3.2 Sample Preparation
  • 3.2.1 Sampling Location
  • 3.2.2 Mineral Composition Characteristics
  • 3.2.3 Microstructural Characteristics
  • 3.3 Determination of the Physical and Mechanical Parameters of Shale
  • 3.3.1 Porosity
  • 3.3.2 Permeability
  • 3.3.3 Basic Mechanical Properties of Longmaxi Shale
  • 3.4 Uniaxial Hydraulic Fracturing Characteristics
  • 3.4.1 Experimental Set-Up
  • 3.4.2 Experimental Procedures
  • 3.4.3 Experiment Results and Analysis
  • 3.5 Characteristics of True Triaxial Hydraulic Fracture
  • 3.5.1 Sample Preparation and Test Equipment
  • 3.5.2 Fracturing Scheme
  • 3.5.3 Analysis of Fracturing Results
  • References
  • 4 Constant Flow Injection
  • 4.1 Introduction
  • 4.2 Instantaneous Fracturing Mechanism of Constant Flow Pressurization
  • 4.2.1 Impact of Axial Load
  • 4.2.2 Effect of Injection Rate
  • References
  • 5 Constant Pressure Injection
  • 5.1 Introduction
  • 5.2 Results and Analysis
  • 5.2.1 Typical Curves of Pump Pressure and Injection Rate Versus Time
  • 5.2.2 New Insights from Observing Hydraulic Fracture Morphology
  • 5.3 Correlation Between Fracture Behavior and Pumping Parameters Based on Engineering Parameters.
  • 5.4 Characterization of the Relationship Between Fracture Propagation and Pumping Parameters
  • References
  • Part III Theoretical Modelling Considering Non-uniform Fluid Pressure
  • 6 Fracture Initiation
  • 6.1 Breakdown Process Under Constant Injection Flow
  • 6.2 Breakdown Process Under Constant Injection Pressure
  • References
  • 7 Fracture Propagation
  • 7.1 Introduction
  • 7.2 Mathematical Formulation
  • 7.2.1 Nonuniform Fluid Pressure Consideration
  • 7.2.2 Semianalytical Solution
  • 7.2.3 Propagation Conditions Under Nonuniform Fluid Pressure
  • 7.3 Validation of the Semianalytical Solution
  • 7.3.1 Degradation from Nonuniform Pressure to Constant Pressure
  • 7.3.2 Stress Distribution
  • 7.3.3 Critical Propagation Condition
  • 7.4 Parametric Sensitivity Analysis
  • 7.4.1 Reliability Analysis of the Numerical Solution (Perturbation of the Number of Subintervals m)
  • 7.4.2 Sensitivity Analysis of the Initial Fluid Pressure P0 and Crack Length a
  • 7.4.3 Perturbation Analysis of the Number of Terms n
  • Appendix 1. ξ-Integrals Function
  • Appendix 2. Closed-Form of F(ξ)
  • References
  • 8 Fracture Interaction Behaviors
  • 8.1 Introduction
  • 8.2 Intersection Model Between Hydraulic Fracture and Natural Fracture
  • 8.2.1 Solution of Net Pressure Inside the Toughness-Dominated HF
  • 8.2.2 Slippage Condition for the NF
  • 8.3 Validation of Composite Criterion
  • 8.3.1 Comparison with Previous Intersection Criteria
  • 8.3.2 Comparison with Laboratory Experiments
  • 8.4 Composite Criterion Considering Nonuniform Fluid Pressure
  • 8.4.1 Nonuniform Form of Fluid Pressure
  • 8.4.2 Comparison with Laboratory Experiments
  • 8.5 Perturbation Analysis of Key Parameters
  • 8.5.1 Impact of Initial Horizontal In-Situ Stress
  • 8.5.2 Impact of Fracture Toughness
  • 8.5.3 Impact of Approaching Distance
  • References
  • Part IV Field Implication.
  • 9 Formation of Complex Networks
  • 9.1 Introduction
  • 9.2 Effect of Bedding Anisotropy on Hydraulic Fracturing
  • 9.2.1 Pump Pressure and Deformation
  • 9.2.2 Acoustic Emission Response of Microfracture
  • 9.2.3 Hydraulic Fracture Morphology
  • 9.3 Effect of Different In-Situ Stress States and Wellbore Orientations on the Formation Mechanism of Complex Fracture Networks
  • 9.3.1 Characteristics of Fluid Pressure and Deformation
  • 9.3.2 Hydraulic Fracture Propagation Modes
  • 9.3.3 Quantitative Evaluation of Fracture Morphology
  • 9.3.4 Effects of Bedding Planes
  • 9.3.5 Effects of In-Situ Stress
  • 9.3.6 Effects of Wellbore Orientations
  • References
  • Epilogue
  • Main Insights
  • Implications for Future Study.