Hydraulic Fracturing and Rock Mechanics.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Singapore : : Springer Singapore Pte. Limited,, 2023.
©2023.
Year of Publication:2023
Edition:1st ed.
Language:English
Online Access:
Physical Description:1 online resource (269 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 50030604810
ctrlnum (MiAaPQ)50030604810
(Au-PeEL)EBL30604810
(OCoLC)1386967895
collection bib_alma
record_format marc
spelling Zhao, Yu.
Hydraulic Fracturing and Rock Mechanics.
1st ed.
Singapore : Springer Singapore Pte. Limited, 2023.
©2023.
1 online resource (269 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Research Progress -- 1.2.1 Initiation and Propagation of Hydraulic Fracture in Shale Reservoirs -- 1.2.2 Model of the Intersection of Hydraulic and Natural Fracture -- 1.2.3 Formation Mechanism of the Complicated Crack Network of Shale -- 1.2.4 Existing Problems -- References -- Part I Theoretical Background -- 2 Rock Mechanics in Hydraulic Fracturing Operations -- 2.1 Stress -- 2.2 Stain -- 2.3 Linear Elastic Material and Its Failure -- 2.4 Pressurized Crack -- References -- Part II Laboratory Observation -- 3 Reservoir Characteristics -- 3.1 Introduction -- 3.2 Sample Preparation -- 3.2.1 Sampling Location -- 3.2.2 Mineral Composition Characteristics -- 3.2.3 Microstructural Characteristics -- 3.3 Determination of the Physical and Mechanical Parameters of Shale -- 3.3.1 Porosity -- 3.3.2 Permeability -- 3.3.3 Basic Mechanical Properties of Longmaxi Shale -- 3.4 Uniaxial Hydraulic Fracturing Characteristics -- 3.4.1 Experimental Set-Up -- 3.4.2 Experimental Procedures -- 3.4.3 Experiment Results and Analysis -- 3.5 Characteristics of True Triaxial Hydraulic Fracture -- 3.5.1 Sample Preparation and Test Equipment -- 3.5.2 Fracturing Scheme -- 3.5.3 Analysis of Fracturing Results -- References -- 4 Constant Flow Injection -- 4.1 Introduction -- 4.2 Instantaneous Fracturing Mechanism of Constant Flow Pressurization -- 4.2.1 Impact of Axial Load -- 4.2.2 Effect of Injection Rate -- References -- 5 Constant Pressure Injection -- 5.1 Introduction -- 5.2 Results and Analysis -- 5.2.1 Typical Curves of Pump Pressure and Injection Rate Versus Time -- 5.2.2 New Insights from Observing Hydraulic Fracture Morphology -- 5.3 Correlation Between Fracture Behavior and Pumping Parameters Based on Engineering Parameters.
5.4 Characterization of the Relationship Between Fracture Propagation and Pumping Parameters -- References -- Part III Theoretical Modelling Considering Non-uniform Fluid Pressure -- 6 Fracture Initiation -- 6.1 Breakdown Process Under Constant Injection Flow -- 6.2 Breakdown Process Under Constant Injection Pressure -- References -- 7 Fracture Propagation -- 7.1 Introduction -- 7.2 Mathematical Formulation -- 7.2.1 Nonuniform Fluid Pressure Consideration -- 7.2.2 Semianalytical Solution -- 7.2.3 Propagation Conditions Under Nonuniform Fluid Pressure -- 7.3 Validation of the Semianalytical Solution -- 7.3.1 Degradation from Nonuniform Pressure to Constant Pressure -- 7.3.2 Stress Distribution -- 7.3.3 Critical Propagation Condition -- 7.4 Parametric Sensitivity Analysis -- 7.4.1 Reliability Analysis of the Numerical Solution (Perturbation of the Number of Subintervals m) -- 7.4.2 Sensitivity Analysis of the Initial Fluid Pressure P0 and Crack Length a -- 7.4.3 Perturbation Analysis of the Number of Terms n -- Appendix 1. ξ-Integrals Function -- Appendix 2. Closed-Form of F(ξ) -- References -- 8 Fracture Interaction Behaviors -- 8.1 Introduction -- 8.2 Intersection Model Between Hydraulic Fracture and Natural Fracture -- 8.2.1 Solution of Net Pressure Inside the Toughness-Dominated HF -- 8.2.2 Slippage Condition for the NF -- 8.3 Validation of Composite Criterion -- 8.3.1 Comparison with Previous Intersection Criteria -- 8.3.2 Comparison with Laboratory Experiments -- 8.4 Composite Criterion Considering Nonuniform Fluid Pressure -- 8.4.1 Nonuniform Form of Fluid Pressure -- 8.4.2 Comparison with Laboratory Experiments -- 8.5 Perturbation Analysis of Key Parameters -- 8.5.1 Impact of Initial Horizontal In-Situ Stress -- 8.5.2 Impact of Fracture Toughness -- 8.5.3 Impact of Approaching Distance -- References -- Part IV Field Implication.
9 Formation of Complex Networks -- 9.1 Introduction -- 9.2 Effect of Bedding Anisotropy on Hydraulic Fracturing -- 9.2.1 Pump Pressure and Deformation -- 9.2.2 Acoustic Emission Response of Microfracture -- 9.2.3 Hydraulic Fracture Morphology -- 9.3 Effect of Different In-Situ Stress States and Wellbore Orientations on the Formation Mechanism of Complex Fracture Networks -- 9.3.1 Characteristics of Fluid Pressure and Deformation -- 9.3.2 Hydraulic Fracture Propagation Modes -- 9.3.3 Quantitative Evaluation of Fracture Morphology -- 9.3.4 Effects of Bedding Planes -- 9.3.5 Effects of In-Situ Stress -- 9.3.6 Effects of Wellbore Orientations -- References -- Epilogue -- Main Insights -- Implications for Future Study.
Description based on publisher supplied metadata and other sources.
Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
Electronic books.
Zhang, Yongfa.
He, Pengfei.
Print version: Zhao, Yu Hydraulic Fracturing and Rock Mechanics Singapore : Springer Singapore Pte. Limited,c2023 9789819925391
ProQuest (Firm)
https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30604810 Click to View
language English
format eBook
author Zhao, Yu.
spellingShingle Zhao, Yu.
Hydraulic Fracturing and Rock Mechanics.
Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Research Progress -- 1.2.1 Initiation and Propagation of Hydraulic Fracture in Shale Reservoirs -- 1.2.2 Model of the Intersection of Hydraulic and Natural Fracture -- 1.2.3 Formation Mechanism of the Complicated Crack Network of Shale -- 1.2.4 Existing Problems -- References -- Part I Theoretical Background -- 2 Rock Mechanics in Hydraulic Fracturing Operations -- 2.1 Stress -- 2.2 Stain -- 2.3 Linear Elastic Material and Its Failure -- 2.4 Pressurized Crack -- References -- Part II Laboratory Observation -- 3 Reservoir Characteristics -- 3.1 Introduction -- 3.2 Sample Preparation -- 3.2.1 Sampling Location -- 3.2.2 Mineral Composition Characteristics -- 3.2.3 Microstructural Characteristics -- 3.3 Determination of the Physical and Mechanical Parameters of Shale -- 3.3.1 Porosity -- 3.3.2 Permeability -- 3.3.3 Basic Mechanical Properties of Longmaxi Shale -- 3.4 Uniaxial Hydraulic Fracturing Characteristics -- 3.4.1 Experimental Set-Up -- 3.4.2 Experimental Procedures -- 3.4.3 Experiment Results and Analysis -- 3.5 Characteristics of True Triaxial Hydraulic Fracture -- 3.5.1 Sample Preparation and Test Equipment -- 3.5.2 Fracturing Scheme -- 3.5.3 Analysis of Fracturing Results -- References -- 4 Constant Flow Injection -- 4.1 Introduction -- 4.2 Instantaneous Fracturing Mechanism of Constant Flow Pressurization -- 4.2.1 Impact of Axial Load -- 4.2.2 Effect of Injection Rate -- References -- 5 Constant Pressure Injection -- 5.1 Introduction -- 5.2 Results and Analysis -- 5.2.1 Typical Curves of Pump Pressure and Injection Rate Versus Time -- 5.2.2 New Insights from Observing Hydraulic Fracture Morphology -- 5.3 Correlation Between Fracture Behavior and Pumping Parameters Based on Engineering Parameters.
5.4 Characterization of the Relationship Between Fracture Propagation and Pumping Parameters -- References -- Part III Theoretical Modelling Considering Non-uniform Fluid Pressure -- 6 Fracture Initiation -- 6.1 Breakdown Process Under Constant Injection Flow -- 6.2 Breakdown Process Under Constant Injection Pressure -- References -- 7 Fracture Propagation -- 7.1 Introduction -- 7.2 Mathematical Formulation -- 7.2.1 Nonuniform Fluid Pressure Consideration -- 7.2.2 Semianalytical Solution -- 7.2.3 Propagation Conditions Under Nonuniform Fluid Pressure -- 7.3 Validation of the Semianalytical Solution -- 7.3.1 Degradation from Nonuniform Pressure to Constant Pressure -- 7.3.2 Stress Distribution -- 7.3.3 Critical Propagation Condition -- 7.4 Parametric Sensitivity Analysis -- 7.4.1 Reliability Analysis of the Numerical Solution (Perturbation of the Number of Subintervals m) -- 7.4.2 Sensitivity Analysis of the Initial Fluid Pressure P0 and Crack Length a -- 7.4.3 Perturbation Analysis of the Number of Terms n -- Appendix 1. ξ-Integrals Function -- Appendix 2. Closed-Form of F(ξ) -- References -- 8 Fracture Interaction Behaviors -- 8.1 Introduction -- 8.2 Intersection Model Between Hydraulic Fracture and Natural Fracture -- 8.2.1 Solution of Net Pressure Inside the Toughness-Dominated HF -- 8.2.2 Slippage Condition for the NF -- 8.3 Validation of Composite Criterion -- 8.3.1 Comparison with Previous Intersection Criteria -- 8.3.2 Comparison with Laboratory Experiments -- 8.4 Composite Criterion Considering Nonuniform Fluid Pressure -- 8.4.1 Nonuniform Form of Fluid Pressure -- 8.4.2 Comparison with Laboratory Experiments -- 8.5 Perturbation Analysis of Key Parameters -- 8.5.1 Impact of Initial Horizontal In-Situ Stress -- 8.5.2 Impact of Fracture Toughness -- 8.5.3 Impact of Approaching Distance -- References -- Part IV Field Implication.
9 Formation of Complex Networks -- 9.1 Introduction -- 9.2 Effect of Bedding Anisotropy on Hydraulic Fracturing -- 9.2.1 Pump Pressure and Deformation -- 9.2.2 Acoustic Emission Response of Microfracture -- 9.2.3 Hydraulic Fracture Morphology -- 9.3 Effect of Different In-Situ Stress States and Wellbore Orientations on the Formation Mechanism of Complex Fracture Networks -- 9.3.1 Characteristics of Fluid Pressure and Deformation -- 9.3.2 Hydraulic Fracture Propagation Modes -- 9.3.3 Quantitative Evaluation of Fracture Morphology -- 9.3.4 Effects of Bedding Planes -- 9.3.5 Effects of In-Situ Stress -- 9.3.6 Effects of Wellbore Orientations -- References -- Epilogue -- Main Insights -- Implications for Future Study.
author_facet Zhao, Yu.
Zhang, Yongfa.
He, Pengfei.
author_variant y z yz
author2 Zhang, Yongfa.
He, Pengfei.
author2_variant y z yz
p h ph
author2_role TeilnehmendeR
TeilnehmendeR
author_sort Zhao, Yu.
title Hydraulic Fracturing and Rock Mechanics.
title_full Hydraulic Fracturing and Rock Mechanics.
title_fullStr Hydraulic Fracturing and Rock Mechanics.
title_full_unstemmed Hydraulic Fracturing and Rock Mechanics.
title_auth Hydraulic Fracturing and Rock Mechanics.
title_new Hydraulic Fracturing and Rock Mechanics.
title_sort hydraulic fracturing and rock mechanics.
publisher Springer Singapore Pte. Limited,
publishDate 2023
physical 1 online resource (269 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Research Progress -- 1.2.1 Initiation and Propagation of Hydraulic Fracture in Shale Reservoirs -- 1.2.2 Model of the Intersection of Hydraulic and Natural Fracture -- 1.2.3 Formation Mechanism of the Complicated Crack Network of Shale -- 1.2.4 Existing Problems -- References -- Part I Theoretical Background -- 2 Rock Mechanics in Hydraulic Fracturing Operations -- 2.1 Stress -- 2.2 Stain -- 2.3 Linear Elastic Material and Its Failure -- 2.4 Pressurized Crack -- References -- Part II Laboratory Observation -- 3 Reservoir Characteristics -- 3.1 Introduction -- 3.2 Sample Preparation -- 3.2.1 Sampling Location -- 3.2.2 Mineral Composition Characteristics -- 3.2.3 Microstructural Characteristics -- 3.3 Determination of the Physical and Mechanical Parameters of Shale -- 3.3.1 Porosity -- 3.3.2 Permeability -- 3.3.3 Basic Mechanical Properties of Longmaxi Shale -- 3.4 Uniaxial Hydraulic Fracturing Characteristics -- 3.4.1 Experimental Set-Up -- 3.4.2 Experimental Procedures -- 3.4.3 Experiment Results and Analysis -- 3.5 Characteristics of True Triaxial Hydraulic Fracture -- 3.5.1 Sample Preparation and Test Equipment -- 3.5.2 Fracturing Scheme -- 3.5.3 Analysis of Fracturing Results -- References -- 4 Constant Flow Injection -- 4.1 Introduction -- 4.2 Instantaneous Fracturing Mechanism of Constant Flow Pressurization -- 4.2.1 Impact of Axial Load -- 4.2.2 Effect of Injection Rate -- References -- 5 Constant Pressure Injection -- 5.1 Introduction -- 5.2 Results and Analysis -- 5.2.1 Typical Curves of Pump Pressure and Injection Rate Versus Time -- 5.2.2 New Insights from Observing Hydraulic Fracture Morphology -- 5.3 Correlation Between Fracture Behavior and Pumping Parameters Based on Engineering Parameters.
5.4 Characterization of the Relationship Between Fracture Propagation and Pumping Parameters -- References -- Part III Theoretical Modelling Considering Non-uniform Fluid Pressure -- 6 Fracture Initiation -- 6.1 Breakdown Process Under Constant Injection Flow -- 6.2 Breakdown Process Under Constant Injection Pressure -- References -- 7 Fracture Propagation -- 7.1 Introduction -- 7.2 Mathematical Formulation -- 7.2.1 Nonuniform Fluid Pressure Consideration -- 7.2.2 Semianalytical Solution -- 7.2.3 Propagation Conditions Under Nonuniform Fluid Pressure -- 7.3 Validation of the Semianalytical Solution -- 7.3.1 Degradation from Nonuniform Pressure to Constant Pressure -- 7.3.2 Stress Distribution -- 7.3.3 Critical Propagation Condition -- 7.4 Parametric Sensitivity Analysis -- 7.4.1 Reliability Analysis of the Numerical Solution (Perturbation of the Number of Subintervals m) -- 7.4.2 Sensitivity Analysis of the Initial Fluid Pressure P0 and Crack Length a -- 7.4.3 Perturbation Analysis of the Number of Terms n -- Appendix 1. ξ-Integrals Function -- Appendix 2. Closed-Form of F(ξ) -- References -- 8 Fracture Interaction Behaviors -- 8.1 Introduction -- 8.2 Intersection Model Between Hydraulic Fracture and Natural Fracture -- 8.2.1 Solution of Net Pressure Inside the Toughness-Dominated HF -- 8.2.2 Slippage Condition for the NF -- 8.3 Validation of Composite Criterion -- 8.3.1 Comparison with Previous Intersection Criteria -- 8.3.2 Comparison with Laboratory Experiments -- 8.4 Composite Criterion Considering Nonuniform Fluid Pressure -- 8.4.1 Nonuniform Form of Fluid Pressure -- 8.4.2 Comparison with Laboratory Experiments -- 8.5 Perturbation Analysis of Key Parameters -- 8.5.1 Impact of Initial Horizontal In-Situ Stress -- 8.5.2 Impact of Fracture Toughness -- 8.5.3 Impact of Approaching Distance -- References -- Part IV Field Implication.
9 Formation of Complex Networks -- 9.1 Introduction -- 9.2 Effect of Bedding Anisotropy on Hydraulic Fracturing -- 9.2.1 Pump Pressure and Deformation -- 9.2.2 Acoustic Emission Response of Microfracture -- 9.2.3 Hydraulic Fracture Morphology -- 9.3 Effect of Different In-Situ Stress States and Wellbore Orientations on the Formation Mechanism of Complex Fracture Networks -- 9.3.1 Characteristics of Fluid Pressure and Deformation -- 9.3.2 Hydraulic Fracture Propagation Modes -- 9.3.3 Quantitative Evaluation of Fracture Morphology -- 9.3.4 Effects of Bedding Planes -- 9.3.5 Effects of In-Situ Stress -- 9.3.6 Effects of Wellbore Orientations -- References -- Epilogue -- Main Insights -- Implications for Future Study.
isbn 9789819925407
9789819925391
callnumber-first T - Technology
callnumber-subject TA - General and Civil Engineering
callnumber-label TA703-705
callnumber-sort TA 3703 3705.4
genre Electronic books.
genre_facet Electronic books.
url https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30604810
illustrated Not Illustrated
oclc_num 1386967895
work_keys_str_mv AT zhaoyu hydraulicfracturingandrockmechanics
AT zhangyongfa hydraulicfracturingandrockmechanics
AT hepengfei hydraulicfracturingandrockmechanics
status_str n
ids_txt_mv (MiAaPQ)50030604810
(Au-PeEL)EBL30604810
(OCoLC)1386967895
carrierType_str_mv cr
is_hierarchy_title Hydraulic Fracturing and Rock Mechanics.
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1792331070887165952
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06378nam a22004213i 4500</leader><controlfield tag="001">50030604810</controlfield><controlfield tag="003">MiAaPQ</controlfield><controlfield tag="005">20240229073850.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr cnu||||||||</controlfield><controlfield tag="008">240229s2023 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789819925407</subfield><subfield code="q">(electronic bk.)</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="z">9789819925391</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)50030604810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL30604810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1386967895</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TA703-705.4</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Yu.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hydraulic Fracturing and Rock Mechanics.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore :</subfield><subfield code="b">Springer Singapore Pte. Limited,</subfield><subfield code="c">2023.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2023.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (269 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- 1 Introduction -- 1.1 Background -- 1.2 Research Progress -- 1.2.1 Initiation and Propagation of Hydraulic Fracture in Shale Reservoirs -- 1.2.2 Model of the Intersection of Hydraulic and Natural Fracture -- 1.2.3 Formation Mechanism of the Complicated Crack Network of Shale -- 1.2.4 Existing Problems -- References -- Part I Theoretical Background -- 2 Rock Mechanics in Hydraulic Fracturing Operations -- 2.1 Stress -- 2.2 Stain -- 2.3 Linear Elastic Material and Its Failure -- 2.4 Pressurized Crack -- References -- Part II Laboratory Observation -- 3 Reservoir Characteristics -- 3.1 Introduction -- 3.2 Sample Preparation -- 3.2.1 Sampling Location -- 3.2.2 Mineral Composition Characteristics -- 3.2.3 Microstructural Characteristics -- 3.3 Determination of the Physical and Mechanical Parameters of Shale -- 3.3.1 Porosity -- 3.3.2 Permeability -- 3.3.3 Basic Mechanical Properties of Longmaxi Shale -- 3.4 Uniaxial Hydraulic Fracturing Characteristics -- 3.4.1 Experimental Set-Up -- 3.4.2 Experimental Procedures -- 3.4.3 Experiment Results and Analysis -- 3.5 Characteristics of True Triaxial Hydraulic Fracture -- 3.5.1 Sample Preparation and Test Equipment -- 3.5.2 Fracturing Scheme -- 3.5.3 Analysis of Fracturing Results -- References -- 4 Constant Flow Injection -- 4.1 Introduction -- 4.2 Instantaneous Fracturing Mechanism of Constant Flow Pressurization -- 4.2.1 Impact of Axial Load -- 4.2.2 Effect of Injection Rate -- References -- 5 Constant Pressure Injection -- 5.1 Introduction -- 5.2 Results and Analysis -- 5.2.1 Typical Curves of Pump Pressure and Injection Rate Versus Time -- 5.2.2 New Insights from Observing Hydraulic Fracture Morphology -- 5.3 Correlation Between Fracture Behavior and Pumping Parameters Based on Engineering Parameters.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5.4 Characterization of the Relationship Between Fracture Propagation and Pumping Parameters -- References -- Part III Theoretical Modelling Considering Non-uniform Fluid Pressure -- 6 Fracture Initiation -- 6.1 Breakdown Process Under Constant Injection Flow -- 6.2 Breakdown Process Under Constant Injection Pressure -- References -- 7 Fracture Propagation -- 7.1 Introduction -- 7.2 Mathematical Formulation -- 7.2.1 Nonuniform Fluid Pressure Consideration -- 7.2.2 Semianalytical Solution -- 7.2.3 Propagation Conditions Under Nonuniform Fluid Pressure -- 7.3 Validation of the Semianalytical Solution -- 7.3.1 Degradation from Nonuniform Pressure to Constant Pressure -- 7.3.2 Stress Distribution -- 7.3.3 Critical Propagation Condition -- 7.4 Parametric Sensitivity Analysis -- 7.4.1 Reliability Analysis of the Numerical Solution (Perturbation of the Number of Subintervals m) -- 7.4.2 Sensitivity Analysis of the Initial Fluid Pressure P0 and Crack Length a -- 7.4.3 Perturbation Analysis of the Number of Terms n -- Appendix 1. ξ-Integrals Function -- Appendix 2. Closed-Form of F(ξ) -- References -- 8 Fracture Interaction Behaviors -- 8.1 Introduction -- 8.2 Intersection Model Between Hydraulic Fracture and Natural Fracture -- 8.2.1 Solution of Net Pressure Inside the Toughness-Dominated HF -- 8.2.2 Slippage Condition for the NF -- 8.3 Validation of Composite Criterion -- 8.3.1 Comparison with Previous Intersection Criteria -- 8.3.2 Comparison with Laboratory Experiments -- 8.4 Composite Criterion Considering Nonuniform Fluid Pressure -- 8.4.1 Nonuniform Form of Fluid Pressure -- 8.4.2 Comparison with Laboratory Experiments -- 8.5 Perturbation Analysis of Key Parameters -- 8.5.1 Impact of Initial Horizontal In-Situ Stress -- 8.5.2 Impact of Fracture Toughness -- 8.5.3 Impact of Approaching Distance -- References -- Part IV Field Implication.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9 Formation of Complex Networks -- 9.1 Introduction -- 9.2 Effect of Bedding Anisotropy on Hydraulic Fracturing -- 9.2.1 Pump Pressure and Deformation -- 9.2.2 Acoustic Emission Response of Microfracture -- 9.2.3 Hydraulic Fracture Morphology -- 9.3 Effect of Different In-Situ Stress States and Wellbore Orientations on the Formation Mechanism of Complex Fracture Networks -- 9.3.1 Characteristics of Fluid Pressure and Deformation -- 9.3.2 Hydraulic Fracture Propagation Modes -- 9.3.3 Quantitative Evaluation of Fracture Morphology -- 9.3.4 Effects of Bedding Planes -- 9.3.5 Effects of In-Situ Stress -- 9.3.6 Effects of Wellbore Orientations -- References -- Epilogue -- Main Insights -- Implications for Future Study.</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="590" ind1=" " ind2=" "><subfield code="a">Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries. </subfield></datafield><datafield tag="655" ind1=" " ind2="4"><subfield code="a">Electronic books.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Yongfa.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">He, Pengfei.</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Print version:</subfield><subfield code="a">Zhao, Yu</subfield><subfield code="t">Hydraulic Fracturing and Rock Mechanics</subfield><subfield code="d">Singapore : Springer Singapore Pte. Limited,c2023</subfield><subfield code="z">9789819925391</subfield></datafield><datafield tag="797" ind1="2" ind2=" "><subfield code="a">ProQuest (Firm)</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://ebookcentral.proquest.com/lib/oeawat/detail.action?docID=30604810</subfield><subfield code="z">Click to View</subfield></datafield></record></collection>