Industrial Energy Systems Handbook.

Saved in:
Bibliographic Details
Superior document:Energy Engineering and Systems Series
:
Place / Publishing House:Aalborg : : River Publishers,, 2023.
Ã2022.
Year of Publication:2023
Edition:1st ed.
Language:English
Series:Energy Engineering and Systems Series
Online Access:
Physical Description:1 online resource (502 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Half-Title
  • RIVER PUBLISHERS SERIES IN ENERGY ENGINEERING AND SYSTEMS
  • Title
  • Copyrights
  • Contents
  • List of Contributors
  • List of Figures
  • List of Tables
  • Chapter 1 Global Energy Situation on Climate Change
  • 1.1 The Negative Impacts and Forecasts of Climate Change
  • 1.1.1 Sea levels
  • 1.1.2 Ocean currents
  • 1.1.3 Coral reefs
  • 1.1.4 Ocean acidity
  • 1.1.5 Wildlife
  • 1.1.6 Hurricanes
  • 1.1.7 Floods
  • 1.1.8 Fires
  • 1.1.9 Forests
  • 1.1.10 Droughts
  • 1.1.11 Human health
  • 1.1.12 Social cost
  • 1.2 The Positive Global Trends to meet the Goals of the Paris Agreement
  • 1.2.1 Coal
  • 1.2.2 Wind
  • 1.2.3 Solar
  • 1.2.4 Employment
  • 1.2.5 Industrial energy efficiency
  • 1.3 International Protocols and Conventions
  • 1.3.1 Paris agreement
  • 1.3.2 Kyoto protocol
  • Chapter 2 Fundamental Principles of Energy
  • 2.1 Forms of Energy
  • 2.1.1 Definition of energy
  • 2.1.2 Different forms of energy and energy flowimportant to energy audits
  • 2.2 Definition of Energy Efficiency
  • 2.3 Definition of Energy Density
  • 2.4 Units of Energy
  • 2.4.1 Calorie
  • 2.4.2 Joule
  • 2.4.3 Pascal
  • 2.4.4 Ampere
  • 2.4.5 Ampere-hour
  • 2.4.6 Volt-Ampere
  • 2.4.7 kiloVolt-Ampere reactive
  • 2.4.8 Watt
  • 2.4.9 Watt-hour
  • 2.4.10 kiloWatt and gigaWatt
  • Chapter 3Energy Conversion and EfficiencyLouis Lagrange
  • 3.1 Energy Conversion, Electricity and Energy Efficiency
  • 3.1.1 Total energy, useful and not useful energy
  • 3.2 The Four Thermodynamic Laws
  • 3.2.1 Definition and interpretation of thermodynamic law nr 0
  • 3.2.2 Definition and interpretation of thermodynamic law nr 1
  • 3.2.3 Definition and interpretation of thermodynamic law nr 2
  • 3.2.4 Definition and interpretation of thermodynamic law nr 3
  • 3.3 Energy Performance Criteria
  • 3.4 Calculation of Energy Efficiency Performance
  • 3.4.1 High level benchmarking metrics.
  • 3.4.2 Energy use index
  • 3.4.3 Energy cost index
  • 3.4.4 Productivity metrics
  • 3.4.5 Energy efficiency rating, seasonal and integrated
  • 3.4.6 System performance metrics
  • 3.4.7 Typical system performance indexes
  • 3.5 Calculation of Point of Use (PoU) costs
  • 3.5.1 Energy conservation and energy conversion (energy flow)
  • 3.5.2 Heat flow and heat loss
  • 3.5.3 Mass- and energy-balance
  • 3.5.4 Energy demand
  • Chapter 4Fundamentals of Electrical EnergyLouis Lagrange
  • 4.1 Electrical Power and Electrical Power Quality
  • 4.2 Electrical Voltage
  • 4.3 Electrical Current
  • 4.4 Electrical Power
  • 4.5 Demand
  • 4.6 Types of Current Flow
  • 4.7 Direct Current
  • 4.8 Batteries
  • 4.9 Alternating Current
  • 4.10 The Different Types of Loads
  • 4.10.1 Electrical circuitry
  • 4.10.2 Resistive loads
  • 4.10.3 Inductive loads
  • 4.10.4 Capacitive loads
  • 4.11 Electrical Power Factor
  • 4.11.1 Lower utility fees
  • 4.11.2 Power factor penalty is eliminated
  • 4.11.3 Increase voltage levels in the electric system and distribution system
  • 4.11.4 Power factor correction in linear loads
  • 4.11.5 Power factor correction in non-linear loads
  • 4.11.6 Passive power factor correction (PFC)
  • 4.11.7 Active power factor correction
  • 4.11.8 Dynamic power factor correction
  • 4.12 Demand Management
  • 4.13 Load Factor
  • 4.14 Load Shifting
  • 4.14.1 Demand response
  • 4.14.2 Dynamic demand
  • 4.15 Load Shedding
  • 4.16 Total Harmonic Distortion (THD)
  • 4.16.1 THD voltage
  • 4.16.2 Harmonic voltage distortions
  • 4.16.3 Harmonic current distortion
  • 4.17 Problems with Harmonics
  • 4.18 Measuring Electrical Energy Consumption
  • 4.18.1 Calculating power, energy and power factor inalternating current circuits
  • 4.18.2 Calculate power, voltage, current andpower factor in AC circuits
  • 4.18.3 Voltage
  • 4.18.4 Current
  • 4.18.5 Power.
  • 4.19 Methods to Correct the Power Factor
  • 4.20 Calculating Energy Efficiency forElectrical Equipment
  • 4.21 Uninterruptible Power Supply
  • Chapter 5Fundamentals of Thermal EnergyAlbert Williams
  • 5.1 Types of Thermal Energy: Sensible and Latent
  • 5.2 Concept of Useful Thermal Energy
  • 5.3 Temperature
  • 5.4 Pressure
  • 5.5 Phase Changes
  • 5.5.1 Evaporation
  • 5.5.2 Condensation
  • 5.5.3 Steam
  • 5.5.4 Moist air and humidity
  • 5.6 Psychrometric Charts
  • 5.6.1 Air temperature
  • 5.6.2 Relative humidity
  • 5.6.3 Mean radiant temperature
  • 5.6.4 Air flow movement
  • 5.6.5 Infiltration loads in buildings
  • 5.7 Calculating Thermal Energy
  • 5.7.1 Heat loss calculations
  • 5.8 Energy Efficiency Measures in Thermal Processes
  • Chapter 6Energy Management Systems andIndustrial Energy AuditsAlbert Williams1 &amp
  • Yolanda de Lange1
  • 6.1 Energy Management Systems (EnMS)
  • 6.1.1 Overview
  • 6.1.2 Energy performance indicators
  • 6.1.3 Calculation of energy efficiency performance
  • 6.1.4 High level benchmarking metrics
  • 6.2 Industrial Energy Audits
  • 6.2.1 The types of energy audits
  • 6.2.2 The energy audit process
  • Chapter 7Instrumentation and ControlAlbert Williams
  • 7.1 The Need for Automated Control
  • 7.2 Control Components
  • 7.2.1 Switches
  • 7.2.2 Sensors
  • 7.2.3 Transducers
  • 7.2.4 Controllers
  • 7.2.5 Control loops
  • 7.2.6 Control devices
  • 7.3 Control Modes
  • 7.3.1 On/Off control
  • 7.3.2 Floating control
  • 7.3.3 Proportional only control (P)
  • 7.3.4 Proportional-plus-integral control (PI)
  • 7.3.5 Proportional-integral-derivative control (PID)
  • 7.4 Sensor Types
  • 7.4.1 Thermostats
  • 7.4.2 Electric meter
  • 7.4.3 Smoke sensors/detectors
  • 7.4.4 Light sensors
  • 7.4.5 Occupancy sensors
  • 7.4.6 Carbon dioxide sensors
  • 7.4.7 Carbon monoxide sensors.
  • 7.5 The Principles of Efficiency with Control andControl Applications
  • 7.5.1 Efficiency through control
  • 7.5.2 Efficiency through control applications
  • Chapter 8Energy Investigation Support ToolsAlbert Williams
  • 8.1 Measurement of Power
  • 8.2 Measurement of Temperature
  • 8.3 Measurement of Pressure
  • 8.4 Measurement of Humidity
  • 8.5 Measurement of Heat Capacity and Heat Storage
  • 8.6 Combustion Measurement
  • 8.7 Measurements of Air Velocity
  • 8.8 Measurements of Flow
  • 8.9 Measurements of Compressed Air Systems
  • 8.9.1 Compressed air flow measurements
  • 8.9.2 Leak detection in compressed air system
  • Chapter 9Fuels, Furnaces, and Fired EquipmentAlbert Williams
  • 9.1 Fuel Fired Systems
  • 9.2 Fuels
  • 9.2.1 Properties of solid fuels
  • 9.2.2 Properties of liquid fuels (Oil)
  • 9.2.1 Properties of gaseous fuels
  • 9.3 Combustion
  • 9.3.1 Combustion of carbon
  • 9.3.2 Combustion air requirement
  • 9.4 Optimizing Combustion Conditions
  • 9.5 Fuel Fired Equipment and Applications
  • 9.5.1 Furnaces
  • 9.5.2 Dryers
  • 9.5.3 Kilns
  • 9.6 Flue Gas and Other Losses in Process Furnaces, Dryers and Kilns
  • 9.7 Burners
  • 9.7.1 Liquid fuel combustion
  • 9.7.2 Pressure jet burners
  • 9.7.3 Rotary cup burners
  • 9.7.4 Air blast burners
  • 9.7.5 Common problems in burners
  • 9.8 Thermal Efficiencies
  • 9.9 Air Pollution Control - Process and Equipment
  • 9.9.1 Greenhouse gas effect
  • 9.9.2 Acid rain
  • 9.9.3 Ground level ozone
  • 9.9.4 Reduction of pollutant emissions fromcombustion process
  • 9.9.5 Energy efficiency improvements
  • 9.9.6 Refinement to the combustion process
  • 9.9.7 Flue gas treatment
  • 9.9.8 Fuel switching
  • 9.10 Energy Efficiency Measures
  • 9.10.1 Maintain proper burner adjustment
  • 9.10.2 Check excess air and combustibles in the flue gas
  • 9.10.3 Keep heat exchange surfaces clean.
  • 9.10.4 Replace/Repair missing and damaged insulation
  • 9.10.5 Check furnace pressure regularly
  • 9.10.6 Schedule production to operate furnaces at ornear maximum output
  • 9.10.7 Replace damaged furnace doors or covers
  • 9.10.8 Install adequate monitoring instrumentation
  • 9.10.9 Recover heat from equipment cooling water
  • 9.10.10 Install a heat exchanger in the flue gas outlet
  • Chapter 10Heat Exchange SystemsAlbert Williams
  • 10.1 Concepts of Conduction, Convection and Radiation
  • 10.1.1 Conduction
  • 10.1.2 Convection
  • 10.1.3 Thermal radiation
  • 10.2 Specific Heat Capacity
  • 10.3 Insulation
  • 10.3.1 Heat loss through a wall
  • 10.3.2 Heat loss from a pipe
  • 10.3.3 Heat loss from an industrial freezer
  • 10.3.4 Insulating materials
  • 10.3.5 Protective coverings and finishes
  • 10.3.6 Accessories
  • 10.3.7 Insulation energy efficiency measures
  • 10.3.8 Vapor loss from open processing tanks
  • 10.4 Heat Recovery with Heat Exchangers
  • 10.4.1 Shell and tube
  • 10.4.3 Heat wheel
  • 10.4.4 Heat pipes
  • 10.4.5 Run around system
  • 10.4.6 Plate or Baffle type heat exchanger
  • 10.4.7 Heat pumps
  • 10.4.8 Waste heat boilers
  • 10.4.9 Recuperators
  • 10.4.10 Heat recovery ventilation systems
  • 10.4.11 Mechanical and natural ventilation
  • Chapter 11Steam SystemsAlbert Williams
  • 11.1 Generation
  • 11.1.1 Steam
  • 11.1.2 Sensible heat and latent heat
  • 11.1.3 Steam quality
  • 11.1.4 Superheated steam
  • 11.1.5 Example of the effects of increasing surface area
  • 11.1.7 Combustion losses
  • 11.1.8 Blowdown losses
  • 11.1.9 Feedwater treatment
  • 11.1.10 Condensate tanks
  • 11.1.11 Flash tanks
  • 11.1.12 Flash steam heat recovery
  • 11.2 Distribution
  • 11.2.1 Condensate return
  • 11.2.2 Steam leaks
  • 11.2.3 Insulation
  • 11.2.4 Steam pressure
  • 11.2.5 Steam pipes
  • 11.2.6 Heat transfer from steam
  • 11.2.7 Steam traps.
  • 11.2.8 Routine maintenance of traps.