Unlocking Artificial Intelligence : : From Theory to Applications.

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2024.
©2024.
Year of Publication:2024
Edition:1st ed.
Language:English
Physical Description:1 online resource (382 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993685569904498
ctrlnum (CKB)33601053500041
(MiAaPQ)EBC31594186
(Au-PeEL)EBL31594186
(EXLCZ)9933601053500041
collection bib_alma
record_format marc
spelling Mutschler, Christopher.
Unlocking Artificial Intelligence : From Theory to Applications.
1st ed.
Cham : Springer International Publishing AG, 2024.
©2024.
1 online resource (382 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.
3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.
6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.
9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.
12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA® -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.
Chapter 16 Optimization of Underground Train Systems.
Münzenmayer, Christian.
Uhlmann, Norman.
Martin, Alexander.
3-031-64831-5
language English
format eBook
author Mutschler, Christopher.
spellingShingle Mutschler, Christopher.
Unlocking Artificial Intelligence : From Theory to Applications.
Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.
3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.
6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.
9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.
12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA® -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.
Chapter 16 Optimization of Underground Train Systems.
author_facet Mutschler, Christopher.
Münzenmayer, Christian.
Uhlmann, Norman.
Martin, Alexander.
author_variant c m cm
author2 Münzenmayer, Christian.
Uhlmann, Norman.
Martin, Alexander.
author2_variant c m cm
n u nu
a m am
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Mutschler, Christopher.
title Unlocking Artificial Intelligence : From Theory to Applications.
title_sub From Theory to Applications.
title_full Unlocking Artificial Intelligence : From Theory to Applications.
title_fullStr Unlocking Artificial Intelligence : From Theory to Applications.
title_full_unstemmed Unlocking Artificial Intelligence : From Theory to Applications.
title_auth Unlocking Artificial Intelligence : From Theory to Applications.
title_new Unlocking Artificial Intelligence :
title_sort unlocking artificial intelligence : from theory to applications.
publisher Springer International Publishing AG,
publishDate 2024
physical 1 online resource (382 pages)
edition 1st ed.
contents Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.
3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.
6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.
9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.
12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA® -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.
Chapter 16 Optimization of Underground Train Systems.
isbn 3-031-64832-3
3-031-64831-5
callnumber-first Q - Science
callnumber-subject Q - General Science
callnumber-label Q325
callnumber-sort Q 3325.5 17
illustrated Not Illustrated
work_keys_str_mv AT mutschlerchristopher unlockingartificialintelligencefromtheorytoapplications
AT munzenmayerchristian unlockingartificialintelligencefromtheorytoapplications
AT uhlmannnorman unlockingartificialintelligencefromtheorytoapplications
AT martinalexander unlockingartificialintelligencefromtheorytoapplications
status_str n
ids_txt_mv (CKB)33601053500041
(MiAaPQ)EBC31594186
(Au-PeEL)EBL31594186
(EXLCZ)9933601053500041
carrierType_str_mv cr
is_hierarchy_title Unlocking Artificial Intelligence : From Theory to Applications.
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1808403556758192128
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11017nam a22004573i 4500</leader><controlfield tag="001">993685569904498</controlfield><controlfield tag="005">20240812084530.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">240812s2024 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-031-64832-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)33601053500041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC31594186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL31594186</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)9933601053500041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">Q325.5-.7</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mutschler, Christopher.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Unlocking Artificial Intelligence :</subfield><subfield code="b">From Theory to Applications.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2024.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (382 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- Part I Theory -- Chapter 1 Automated Machine Learning -- 1.1 Introduction -- 1.2 Components of AutoML Systems -- 1.2.1 Search Space -- 1.2.2 Optimization -- 1.2.3 Ensembling -- 1.2.4 Feature Selection and Engineering -- 1.2.5 Meta-Learning -- 1.2.6 A Brief Note on AutoML in the Wild -- 1.3 Selected Topics in AutoML -- 1.3.1 AutoML for Time Series Data -- 1.3.2 Unsupervised AutoML -- 1.3.3 AutoML Beyond a Single Objective -- 1.3.4 Human-In-The-Loop AutoML -- 1.4 Neural Architecture Search -- 1.4.1 A Brief Overview of the Current State of NAS -- 1.4.2 Hardware-aware NAS -- 1.5 Conclusion and Outlook -- References -- Chapter 2 Sequence-based Learning -- 2.1 Introduction -- 2.2 Time Series Processing -- 2.2.1 Time Series Data Streams -- 2.2.2 Pre-Processing -- 2.2.3 Predictive Modelling -- 2.2.4 Post-Processing -- 2.3 Methods -- 2.3.1 Temporal Convolutional Networks -- 2.3.2 Recurrent Neural Networks -- 2.3.3 Transformer -- 2.4 Perspectives -- 2.4.1 Time Series Similarity -- 2.4.1.1 Deep Metric Learning -- 2.4.2 Transfer Learning &amp;amp -- Domain Adaptation -- 2.4.3 Model Interpretability -- 2.4.3.1 Interpretability for Time Series -- 2.4.3.2 Trusting Interpretations -- 2.5 Conclusion and Outlook -- Acknowledgments -- References -- Chapter 3 Learning from Experience -- 3.1 Introduction -- 3.2 Concepts of Reinforcement Learning -- 3.2.1 Markov Decision Processes (MDPs) -- 3.2.2 Dynamic Programming -- 3.2.3 Model-free Reinforcement Learning -- 3.2.4 General Remarks -- 3.3 Learning purely through Interaction -- 3.3.1 Exploration-Exploitation -- 3.3.1.1 Exploration Strategies -- 3.3.1.2 Exploration in Deep RL -- 3.4 Learning with Data or Knowledge -- 3.4.1 Model-based RL with continuous Actions -- 3.4.2 MBRL with Discrete Actions: Monte Carlo Tree Search -- 3.4.3 Offline Reinforcement Learning.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.4 Hierarchical RL -- 3.5 Challenges for Agent Deployment -- 3.5.1 Safety through Policy Constraints -- 3.5.2 Generalizability of Policies -- 3.5.3 Lack of a Reward Function -- 3.6 Conclusion and Outlook -- References -- Chapter 4 Learning with Limited Labelled Data -- 4.1 Introduction -- 4.2 Semi-Supervised Learning -- 4.2.1 Classical Semi-Supervised Learning -- 4.2.2 Deep Semi-Supervised Learning -- 4.2.2.1 Self-training -- 4.2.2.2 Unsupervised Regularization -- 4.2.3 Self-Training and Consistency Regularization -- 4.3 Active Learning -- 4.3.1 Deep Active Learning (DAL) -- 4.3.2 Uncertainty Sampling -- 4.3.3 Diversity Sampling -- 4.3.4 Balanced Criteria -- 4.4 Active Semi-Supervised Learning -- 4.4.1 How can SSL and ALWork Together? -- 4.4.2 Are SSL and AL Always Mutually Beneficial? -- 4.5 Conclusion and Outlook -- References -- Chapter 5 The Role of Uncertainty Quantification for Trustworthy AI -- 5.1 Introduction -- 5.2 Towards Trustworthy AI -- 5.2.1 The EU AI Act -- 5.2.2 From Uncertainty to Trustworthy AI -- 5.3 Uncertainty Quantification -- 5.3.1 Sources of Uncertainty -- 5.3.1.1 Aleatoric Uncertainty -- 5.3.1.2 Epistemic Uncertainty -- 5.3.2 Methods for Quantification of Uncertainty and Calibration -- 5.3.2.1 Data-based Methods -- 5.3.2.2 Architecture-Modifying Methods -- 5.3.2.3 Post-Hoc Methods -- 5.3.3 Evaluation Metrics for Uncertainty Estimation -- 5.3.3.1 Negative Log-Likelihood -- x -- 5.3.3.2 Expected Calibration Error -- 5.3.3.3 Rejection-based Measures -- 5.4 Conclusion and Outlook -- References -- Chapter 6 Process-aware Learning -- 6.1 Introduction -- 6.2 Overview of Process Mining -- 6.2.1 Process Mining Basic Concept -- 6.2.2 Process Mining Types -- 6.2.2.1 Process Discovery -- 6.2.2.2 Conformance Checking -- 6.2.2.3 Model Enhancement -- 6.2.3 Event Log -- 6.2.4 Four Quality Criteria -- 6.2.5 Types of Processes.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">6.2.5.1 Lasagna Processes -- 6.2.5.2 Spaghetti Processes -- 6.3 Process-Awareness from Theory to Practice -- 6.3.1 Predictive Analysis in Process Mining -- 6.3.2 Predictive Process Mining with Bayesian Statistics -- 6.3.2.1 Preliminaries for Bayesian Modeling -- 6.3.2.2 Quality Criteria for Bayesian Modeling -- 6.3.2.3 Context-Aware Structure Learning for Probabilistic Process Prediction -- 6.3.3 Process AI -- 6.4 Conclusion and Outlook -- References -- Chapter 7 Combinatorial Optimization -- 7.1 Introduction -- 7.2 Solving Methods -- 7.2.1 Heuristics -- 7.2.2 Exact Methods -- 7.3 Modeling Techniques -- 7.3.1 Graph Theory -- 7.3.1.1 Clique Problems -- 7.3.1.2 Flow Models -- 7.3.2 Mixed Integer Programs and Connections to Machine Learning -- 7.3.2.1 Modeling Logic -- 7.3.2.2 Binary Decision Trees -- 7.3.3 Pooling -- 7.4 Conclusion and Outlook -- References -- Chapter 8 Acquisition of Semantics for Machine-Learning and Deep-Learning based Applications -- 8.1 Introduction -- 8.2 Approaches to Acquire Semantics -- 8.2.1 Manual Annotation and Labeling -- 8.2.2 Data Augmentation Techniques -- 8.2.3 Simulation and Generation -- 8.2.3.1 Physical Modeling -- 8.2.3.2 Generative Adversarial Networks -- 8.2.4 High-End Reference Sensors -- 8.2.5 Active Learning -- 8.2.6 Knowledge Modeling Using Semantic Networks -- 8.2.7 Discussion -- 8.3 Conclusion and Outlook -- References -- Part II Applications -- Chapter 9 Assured Resilience in Autonomous Systems - Machine Learning Methods for Reliable Perception -- 9.1 Introduction -- 9.1.1 The Perception Challenge -- 9.2 Approaches to reliable perception -- 9.2.1 Choice of Dataset -- 9.2.2 Unexpected Behavior of ML Methods -- 9.2.3 Reliable Object Detection for Autonomous Driving -- 9.2.4 Uncertainty Quantification for Image Classification -- 9.2.5 Ensemble Distribution Distillation for 2D Object Detection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2.6 Robust Object Detection in Simulated Driving Environments -- 9.2.6.1 Scenarios Setup -- 9.2.6.2 Methods and Metrics -- 9.2.6.3 Results -- 9.2.7 Out-of-Distribution Detection -- 9.3 Conclusion and Outlook -- References -- Chapter 10 Data-driven Wireless Positioning -- 10.1 Introduction -- 10.2 AI-Assisted Localization -- 10.3 Direct Positioning -- 10.3.1 Model -- 10.3.2 Experimental Setup -- 10.3.2.1 Measurement Campaign -- 10.3.2.2 Environments -- 10.3.3 Evaluation -- 10.3.4 Hybrid Localization -- 10.3.5 Zone Identification -- 10.3.6 Experimental Setup -- 10.3.7 Environments -- 10.3.8 Evaluation -- 10.4 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 11 Comprehensible AI for Multimodal State Detection -- 11.1 Introduction -- 11.1.1 Cognitive Load Estimation -- 11.1.2 Challenges in Affective Computing -- 11.2 Data Collection -- 11.2.1 Annotation -- 11.2.2 Data Preprocessing -- 11.3 Modeling -- 11.3.1 In-Domain Evaluation -- 11.3.2 Cross-Domain Evaluation -- 11.3.3 Interpretability -- 11.3.4 Improving ECG Representation Learning -- 11.3.5 Deployment and Application -- 11.4 Conclusion and Outlook -- References -- Chapter 12 Robust and Adaptive AI for Digital Pathology -- 12.1 Introduction -- 12.2 Applications: Tumor Detection and Tumor-Stroma Assessment -- 12.2.1 Generation of Labeled Data Sets -- 12.2.2 Data Sets for Tumor Detection -- 12.2.2.1 Primary Data Set -- 12.2.2.2 Multi-Scanner Dataset -- 12.2.2.3 Multi-Center Dataset -- 12.2.2.4 Out-of-Distribution Data Set -- 12.2.2.5 Urothelial Data Sets -- 12.2.3 Data Set for Tumor-Stroma Assessment -- 12.3 Prototypical Few-Shot Classification -- 12.3.1 Robustness through Data Augmentation -- 12.3.1.1 Evaluation on the Multi-Scanner Data Set -- 12.3.1.2 Evaluation on the Multi-Center Data Set -- 12.3.2 Out-of-Distribution Detection.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">12.3.3 Adaptation to Urothelial Tumor Detection -- 12.3.4 Interactive AI Authoring with MIKAIA® -- 12.4 Prototypical Few-Shot Segmentation -- 12.4.1 Tumor-Stroma Assessment -- 12.5 Conclusion and Outlook -- Acknowledgements -- References -- Chapter 13 Safe and Reliable AI for Autonomous Systems -- 13.1 Introduction -- 13.1.1 Reinforcement Learning -- 13.1.2 Reinforcement Learning for Autonomous Driving -- 13.2 Generating Environments with Driver Dojo -- 13.2.1 Method -- 13.3 Training safe Policies with SafeDQN -- 13.3.1 Method -- 13.3.2 Evaluation -- 13.4 Extracting tree policies with SafeVIPER -- 13.4.1 Training the Policy -- 13.4.2 Verification of Decision Trees -- 13.4.3 Evaluation -- 13.5 Conclusion and Outlook -- References -- Chapter 14 AI for Stability Optimization in Low Voltage Direct Current Microgrids -- 14.1 Introduction -- 14.2 Low Voltage DC Microgrids -- 14.2.1 Control of Low Voltage DC Microgrids -- 14.2.2 Stability of Low Voltage DC Microgrids -- 14.3 AI-based Stability Optimization for Low Voltage DC Microgrids -- 14.3.1 Overview -- 14.3.2 Digital Network Twin and Generation of Labels to Describe the Stability State -- 14.3.3 LVDC Microgrid Surrogate Model Applying Random Forests -- 14.3.4 Stability Optimization Applying Decision Trees -- 14.4 Implementation and Assessment -- 14.4.1 Measurement of Grid Stability -- 14.4.2 Experimental Validation -- 14.5 Conclusion and Outlook -- References -- Chapter 15 Self-Optimization in Adaptive Logistics Networks -- 15.1 Introduction -- 15.2 A Brief Overview of Relevant Literature on Predicting the All-Time Buy Quantity -- 15.3 Predicting the All-Time Buy -- 15.4 A Probabilistic Hierarchical Growth Curve model -- 15.5 Determining the Optimal Order Policy -- 15.5.1 Modeling Non-Linear Costs -- 15.5.2 Robust Optimization -- 15.6 Pooling -- 15.7 Conclusion and Outlook -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Chapter 16 Optimization of Underground Train Systems.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Münzenmayer, Christian.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Uhlmann, Norman.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Martin, Alexander.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-031-64831-5</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-08-26 00:29:41 Europe/Vienna</subfield><subfield code="f">System</subfield><subfield code="c">marc21</subfield><subfield code="a">2024-08-04 11:53:47 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5357320780004498&amp;Force_direct=true</subfield><subfield code="Z">5357320780004498</subfield><subfield code="b">Available</subfield><subfield code="8">5357320780004498</subfield></datafield></record></collection>