ArcheoFOSS XIV 2020 : : Proceedings of the 14th International Conference, 15-17 October 2020.

This volume represents the editorial outcome of the 14th edition of ArcheoFOSS international conference, which took place online between 15-17 October 2020. The event has been held annually since 2006 and is dedicated to the theoretical framework and actual application of free and open source softwa...

Full description

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Oxford : : Archaeopress,, 2021.
©2021.
Year of Publication:2021
Edition:1st ed.
Language:English
Physical Description:1 online resource (224 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Title Page
  • Copyright Page
  • Contents Page
  • Foreword
  • ArcheoFOSS 2020 Committees
  • Strumenti digitali open-source per la documentazione della cultura visuale
  • Michele Pellegrino, Donato Coppola
  • Figura 1: a) Henri Breuil: rilievo diretto di un graffito parietale
  • b) riproduzione a pastello di bovidi presso la Grotta di Altamira (Groenen 2018: figg. 10, 22).
  • Figura 2: Grotta di Santa Maria di Agnano (Ostuni, BR): a) saggio di scavo archeologico (anno 2016)
  • b) supporti calcarei con sintassi decorative geometrico-lineari rinvenute nel corso della campagna di scavo 2016 (Coppola et al. 2017: Figura 8).
  • Figura 3: Grotta di Santa Maria di Agnano (Ostuni, BR): a) RTIbuilder, fase di detecting sphere
  • b) RTIviewer: visualizzazione in modalità Specular Enhancement.
  • Figura 4: Grotta di Santa Maria di Agnano (Ostuni, BR): a) Blender: lightdome virtuale con camera ortografica e mesh dell'oggetto
  • b) RTIviewer: visualizzazione in Specular Enhancement del procedimento v-RTI.
  • Figura 5: Grotta di Santa Maria di Agnano (Ostuni, BR): a-b) visualizzazione del dettaglio di un supporto calcareo con incisioni lineari non-figurative (SMA-test_2) in modalità Specular Enhancement [a) d.c. 90, sp. 05, h. s. 95
  • b) d.c. 0, sp. 30, h. s. 1
  • Valutazione integrata delle dinamiche di rischio di erosione del suolo
  • Stefano De Angeli et al
  • Figura 1: Struttura generale del sistema RESEARCH: catene di processamento e piattaforma Web-GIS (@RESEARCH Project).
  • Tabella 1: Valori di vulnerabilità ed esposizione alla minaccia delle varie tipologie di evidenze archeologiche.
  • Figura 2: Falerii Novi, area campione. Modello USPD: DTM finale con variazioni dei valori di altitudine (@RESEARCH Project).
  • Figura 3: Falerii Novi, area campione. Mappa di minaccia dell'erosione del suolo (@RESEARCH Project).
  • Figura 4: Falerii Novi, area meridionale. Restituzione 2D delle evidenze archeologiche individuate con valori di profondità dei singoli pixel (@RESEARCH Project).
  • Figura 5: Falerii Novi, area meridionale. Mappa di vulnerabilità archeologica correlata alla minaccia di erosione del suolo (@RESEARCH Project).
  • Figura 6: Falerii Novi, area campione. Mappa di rischio finale (@RESEARCH Project).
  • Rome - NE Palatine slopes
  • Emanuele Brienza, Giovanni Caratelli, Lorenzo Fornaciari, Cecilia Giorgi
  • Figure 1: Rome, NE Palatine slopes. Orthophotomosaic produced by CNR at the end of the 2012 excavation campaign.
  • Figure 2: Rome, NE Palatine slopes. Orthographic view of the new 3D model representing the 'Baths of Elagabalus' and Vigna Barberini's substructions.
  • Figure 3: Rome, NE Palatine slopes. (a) Portion of the 3D model recently reprocessed with the CNR photographic archive, using multi-image photogrammetry
  • (b) the same portion of 3D model integrated by processing dataset acquired in the last topographic an
  • Figure 4: Rome, NE Palatine slopes. The new database on PostgreSQL/PostGIS performed on QGIS.
  • Figure 5: Rome, NE Palatine slopes. A first WebGIS development carried out thanks to the gishosting service of the Gter company (https://www.gishosting.gter.it/home/).
  • Figure 6: Rome, NE Palatine slopes. An example of exporting data in KML format and their integration in Google Earth platform.
  • Un workflow open-source per l'elaborazione delle immagini termiche da drone
  • Gabriele Ciccone
  • Figura 1: Esempi di immagine RGB e IR e schema dei voli effettuati.
  • Figura 2: Schema del workflow con software proprietari per l'elaborazione di immagini termiche.
  • Figura 3: Schema del workflow con software free e open-source per l'elaborazione di immagini termiche.
  • Figura 4: (a) Ortofoto in 4 bande (R, G, B, IR).
  • (b) Ortofoto nella singola banda IR.
  • Figura 5: Confronto di ortofoto in banda IR in differenti orari della stessa giornata.
  • Analysis of urban mobility in 18th-century Rome
  • Renata Ago, Domizia D'Erasmo
  • Figure 1: a) A section of the strada della Valle as depicted in Nolli's map
  • b) Example of a path that involves passing through a courtyard of a building in piazza Navona (base map: Nuova Topografia di Roma).
  • Figure 2: Result of the vectorization of all analysed paths by GIS platform.
  • Table 1: Extract of the first ten records of the table of attributes of private citizens' paths.
  • Figure 3: a) List of ten paths of private citizens passing through a street adjacent to piazza della Rotonda
  • b) vectorization result
  • c) list of returned records (base map: Nuova Topografia di Roma).
  • Figure 4: a) Vectorized paths around piazza della Rotonda
  • b) transformation of lines into points set 10 m apart
  • c) Kernel analysis (Base map: Nuova Topografia di Roma).
  • Figure 5: Heatmap of ceremonial paths (14) of the 18th century (base maps: Nuova Topografia di Roma and Bing Satellite).
  • Figure 6: a) Heatmap of home-business paths in 1739
  • b) heatmap of home-business paths in 1749
  • c) heatmap of home-business paths in 1739
  • d) heatmap of home-business paths in 1749 (base maps: Nuova Topografia di Roma and Bing Satellite).
  • Towards FreeCAD experimentation and validation
  • Filippo Diara, Fulvio Rinaudo
  • Figure 1: Knowledge processes: from metric survey (A) to stratigraphic survey and analysis (B and C), until the parametric model construction (D).
  • Figure 2: FreeCAD platform and parametric model of the refectory with stratigraphic units.
  • Figure 3: Stratigraphic diagrams implemented as semantic data (Harris Matrix of north wall of the refectory of medieval Staffarda Abbey).
  • Figure 4. SQL query by using Reporting workbench and statement configuration: selection of stone elements and their description (result on CSV).
  • FLOS for Museums: open solutions to train communities and manage heritage sites
  • Paolo Rosati
  • N.
  • Name
  • Description
  • 1
  • Evolution
  • To evolve the museum space and its exhibits digitally, and mediate a new kind of knowledge (STEAM).
  • 2
  • Empowering
  • To empower the scientific segments and the editorial management of the heritage institution, writing about new discoveries and filing patents.
  • 3
  • Interconnection
  • To build an interconnection between the museum and the neighbors of the city, creating stable and operative communities nearby the institution.
  • 4
  • Economic growth
  • To teach self-employment techniques helping family economies from a start-up level.
  • 5
  • Return school
  • To reach out to young people prone to early school leaving, projecting open spaces with a FLOS habitat for them, which can stimulate their curiosity and spirit of believing in themselves.
  • 6
  • Lifestyle rank
  • To increase in the museum communities the need of a plain cultural existence and growth in lifestyle ranking.
  • 7
  • Deep study
  • To explore deeply with the communities the collections.
  • 8
  • Museum Economy
  • To enrich the museum economy with new editorial products, open-access, online catalogues, linked open-data for projecting new web services for the online communities.
  • 9
  • Research
  • To let to the citizens, investigate the daily fundamental role of the researchers and rise the appreciation on the great developments of science.
  • 10
  • Challenges
  • To educate communities in solidarity, equality, environmental importance, and green habits (as reuse, recycling and self-made skills).
  • Table 1: Top 10 practices for the 21st-century museums, based on the study of the author during the case studies (infra 3).
  • N.
  • Museum/
  • Archaeological site
  • Project name
  • Place/s
  • Year/s
  • Main activities
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • Table 2: The six activities by Una Quantum in cultural heritage management using FLOSS tools.
  • Classroom Name
  • Number of Classes
  • Software/code
  • Average age
  • Participants
  • Coding
  • 3
  • JavaScript
  • 32
  • 9
  • Photogrammetry
  • 6
  • Regard 3D Mesh Lab Cloud Compare
  • 25
  • 31
  • 3D modelling
  • 5
  • Blender
  • 23
  • 29
  • Geographical Information Systems (GIS)
  • 6
  • QGIS Pyarchinit
  • 26
  • 50
  • Virtual Tour 360°
  • 3
  • Pannellum
  • 23
  • 15
  • Tot. classrooms
  • Tot. courses
  • Tot. FLOSS Software
  • Average age
  • Tot.
  • Participants
  • 5
  • 23
  • 7
  • 25.8
  • 134
  • Table 3: FLOSS classrooms in two-year activities at MUCIV, Rome.
  • Table 4: Free access classrooms at MNETRU of Rome during the 'Circuiti' program
  • Table 5: The digital excavation field-school.
  • Table 6: Summer camp at the Museo Civico Archeologico Rodolfo Lanciani in Guidonia (Rome).
  • Table 7: Building the Museo delle Culture 'Villa Garibaldi (MUDECU), GNU' site. Some free licensed CMS for museum sites.
  • Table 8: Overview of FLOS software used, debugged, developed for training and labs in public museums.
  • Table 9: Utility of FLOSS technologies in heritage-institution management.
  • Table 10: The business model for developing techno-creative spaces.
  • The virtual countryman. A GRASS-GIS tool for ancient cultivation recognition
  • Augusto Palombini
  • Figure 1: Virtual reconstruction of Iron Age and Roman landscapes in the Upper Tiber Valley (Arnoldus-Huydzendveld et al. 2012
  • Pietroni et al. 2013).
  • Figure 2: Flowchart of the landscape reconstruction pipeline, as conceived by the CNR Virtual Heritage Lab after the Tiber Valley Project.