Scattering Amplitudes in Quantum Field Theory.

Saved in:
Bibliographic Details
Superior document:Lecture Notes in Physics Series ; v.1021
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2024.
©2024.
Year of Publication:2024
Edition:First edition.
Language:English
Series:Lecture notes in physics
Physical Description:1 online resource (312 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993646964104498
ctrlnum (CKB)29527082000041
(MiAaPQ)EBC31063558
(Au-PeEL)EBL31063558
(OCoLC)1416698436
(EXLCZ)9929527082000041
collection bib_alma
record_format marc
spelling Badger, Simon.
Scattering Amplitudes in Quantum Field Theory.
First edition.
Cham : Springer International Publishing AG, 2024.
©2024.
1 online resource (312 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Lecture Notes in Physics Series ; v.1021
Description based on publisher supplied metadata and other sources.
Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction and Foundations -- 1.1 Poincaré Group and Its Representations -- 1.2 Weyl and Dirac Spinors -- 1.3 Non-Abelian Gauge Theories -- 1.4 Feynman Rules for Non-Abelian Gauge Theories -- 1.5 Scalar QCD -- 1.6 Perturbative Quantum Gravity -- 1.7 Feynman Rules for Perturbative Quantum Gravity -- 1.8 Spinor-Helicity Formalism for Massless Particles -- 1.9 Polarisations of Massless Particles of Spin 12, 1 and 2 -- 1.10 Colour Decompositions for Gluon Amplitudes -- 1.10.1 Trace Basis -- 1.10.2 Structure Constant Basis -- 1.11 Colour-Ordered Amplitudes -- 1.11.1 Vanishing Tree Amplitudes -- 1.11.2 The Three-Gluon Tree-Amplitudes -- 1.11.3 Helicity Weight -- 1.11.4 Vanishing Graviton Tree-Amplitudes -- References -- 2 On-Shell Techniques for Tree-Level Amplitudes -- 2.1 Factorisation Properties of Tree-Level Amplitudes -- 2.1.1 Collinear Limits -- 2.1.2 Soft Theorems -- 2.1.3 Spinor-Helicity Formulation of Soft Theorems -- 2.1.4 Subleading Soft Theorems -- 2.2 BCFW Recursion for Gluon Amplitudes -- 2.2.1 Large z Falloff -- 2.3 BCFW Recursion for Gravity and Other Theories -- 2.4 MHV Amplitudes from the BCFW Recursion Relation -- 2.4.1 Proof of the Parke-Taylor Formula -- 2.4.2 The Four-Graviton MHV Amplitude -- 2.5 BCFW Recursion with Massive Particles -- 2.5.1 Four-Point Amplitudes with Gluons and MassiveScalars -- 2.6 Symmetries of Scattering Amplitudes -- 2.7 Double-Copy Relations for Gluon and Graviton Amplitudes -- 2.7.1 Lower-Point Examples -- 2.7.2 Colour-Kinematics Duality: A Four-Point Example -- 2.7.3 The Double-Copy Relation -- References -- 3 Loop Integrands and Amplitudes -- 3.1 Introduction to Loop Amplitudes -- 3.2 Unitarity and Cut Construction -- 3.3 Generalised Unitarity -- 3.4 Reduction Methods -- 3.4.1 Tensor Reduction.
3.4.2 Transverse Spaces and Transverse Integration -- 3.5 General Integral and Integrand Bases for One-Loop Amplitudes -- 3.5.1 The One-Loop Integral Basis -- 3.5.2 A One-Loop Integrand Basis in Four Dimensions -- 3.5.2.1 The Box Integrand in Four Dimensions -- 3.5.2.2 The Triangle Integrand in Four Dimensions -- 3.5.2.3 The Bubble Integrand in Four Dimensions -- 3.5.3 D-Dimensional Integrands and Rational Terms -- 3.5.3.1 The Pentagon Integrand -- 3.5.3.2 Extending the Box, Triangle and Bubble Integrand Basis to D=4-2ε Dimensions -- 3.5.4 Final Expressions for One-Loop Amplitudes in D-Dimensions -- 3.5.5 The Direct Extraction Method -- 3.6 Project: Rational Terms of the Four-Gluon Amplitude -- 3.7 Outlook: Rational Representations of the External Kinematics -- 3.8 Outlook: Multi-Loop Amplitude Methods -- References -- 4 Loop Integration Techniques and Special Functions -- 4.1 Introduction to Loop Integrals -- 4.2 Conventions and Basic Methods -- 4.2.1 Conventions for Minkowski-Space Integrals -- 4.2.2 Divergences and Dimensional Regularisation -- 4.2.3 Statement of the General Problem -- 4.2.4 Feynman Parametrisation -- 4.2.5 Summary -- 4.3 Mellin-Barnes Techniques -- 4.3.1 Mellin-Barnes Representation of the One-Loop Box Integral -- 4.3.2 Resolution of Singularities in ε -- 4.4 Special Functions, Differential Equations, and Transcendental Weight -- 4.4.1 A First Look at Special Functionsin Feynman Integrals -- 4.4.2 Special Functions from Differential Equations: The Dilogarithm -- 4.4.3 Comments on Properties of the Defining Differential Equations -- 4.4.4 Functional Identities and Symbol Method -- 4.4.5 What Differential Equations Do Feynman Integrals Satisfy? -- 4.5 Differential Equations for Feynman Integrals -- 4.5.1 Organisation of the Calculation in Terms of Integral Families -- 4.5.2 Obtaining the Differential Equations.
4.5.3 Dimensional Analysis and Integrability Check -- 4.5.4 Canonical Differential Equations -- 4.5.5 Solving the Differential Equations -- 4.6 Feynman Integrals of Uniform Transcendental Weight -- 4.6.1 Connection to Differential Equationsand (Unitarity) Cuts -- 4.6.2 Integrals with Constant Leading Singularities and Uniform Weight Conjecture -- References -- 5 Solutions to the Exercises -- Exercise 1.1: Manipulating Spinor Indices -- Exercise 1.2: Massless Dirac Equation and Weyl Spinors -- Exercise 1.3: SU(Nc) Identities -- Exercise 1.4: Casimir Operators -- Exercise 1.5: Spinor Identities -- Exercise 1.6: Lorentz Generators in the Spinor-Helicity Formalism -- Exercise 1.7: Gluon Polarisations -- Exercise 1.8: Colour-Ordered Feynman Rules -- Exercise 1.9: Independent Gluon Partial Amplitudes -- Exercise 1.10: The MHV3 Amplitude -- Exercise 1.11: Four-Point Quark-Gluon Scattering -- Exercise 2.1: The Vanishing Splitting Function Splittree+(x,a+,b+) -- Exercise 2.2: Soft Functions in the Spinor-Helicity Formalism -- Exercise 2.3: A qggg Amplitude from Collinear and Soft Limits -- Exercise 2.4: The Six-Gluon Split-Helicity NMHV Amplitude -- Exercise 2.5: Soft Limit of the Six-Gluon Split-Helicity Amplitude -- Exercise 2.6: Mixed-Helicity Four-Point Scalar-Gluon Amplitude -- Exercise 2.7: Conformal Algebra -- Exercise 2.8: Inversion and Special Conformal Transformations -- Exercise 2.9: Kinematical Jacobi Identity -- Exercise 2.10: Five-Point KLT Relation -- Exercise 3.1: The Four-Gluon Amplitude in N=4 Super-Symmetric Yang-Mills Theory -- Exercise 3.2: Quadruple Cuts of Five-Gluon MHV Scattering Amplitudes -- Exercise 3.3: Tensor Decomposition of the Bubble Integral -- Exercise 3.4: Spurious Loop-Momentum Space for the Box Integral -- Exercise 3.5: Reducibility of the Pentagon in Four Dimensions -- Exercise 3.6: Parametrising the Bubble Integrand.
Exercise 3.7: Dimension-Shifting Relation at One Loop -- Exercise 3.8: Projecting Out the Triangle Coefficients -- Exercise 3.9: Rank-One Triangle Reduction with Direct Extraction -- Exercise 3.10: Momentum-Twistor Parametrisations -- Exercise 4.1: The Massless Bubble Integral -- Exercise 4.2: Feynman Parametrisation -- Exercise 4.3: Taylor Series of the Log-Gamma Function -- Exercise 4.4: Finite Two-Dimensional Bubble Integral -- Exercise 4.5: Laurent Expansion of the Gamma Function -- Exercise 4.6: Massless One-Loop Box with Mellin-Barnes Parametrisation -- Exercise 4.7: Discontinuities -- Exercise 4.8: The Symbol of a Transcendental Function -- Exercise 4.9: Symbol Basis and Weight-Two Identities -- Exercise 4.10: Simplifying Functions Using the Symbol -- Exercise 4.11: The Massless Two-Loop Kite Integral -- Exercise 4.13: ``d log'' Form of the Massive Bubble Integrand with D=2 -- Exercise 4.14: An Integrand with Double Poles: The Two-Loop Kite in D=4 -- Exercise 4.16: The Box Integrals with the Differential Equations Method -- References -- A Conventions and Useful Formulae -- Reference.
Henn, Johannes M.
Plefka, Jan C.
Zoia, Simone.
3-031-46986-0
Lecture notes in physics
language English
format eBook
author Badger, Simon.
spellingShingle Badger, Simon.
Scattering Amplitudes in Quantum Field Theory.
Lecture Notes in Physics Series ;
Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction and Foundations -- 1.1 Poincaré Group and Its Representations -- 1.2 Weyl and Dirac Spinors -- 1.3 Non-Abelian Gauge Theories -- 1.4 Feynman Rules for Non-Abelian Gauge Theories -- 1.5 Scalar QCD -- 1.6 Perturbative Quantum Gravity -- 1.7 Feynman Rules for Perturbative Quantum Gravity -- 1.8 Spinor-Helicity Formalism for Massless Particles -- 1.9 Polarisations of Massless Particles of Spin 12, 1 and 2 -- 1.10 Colour Decompositions for Gluon Amplitudes -- 1.10.1 Trace Basis -- 1.10.2 Structure Constant Basis -- 1.11 Colour-Ordered Amplitudes -- 1.11.1 Vanishing Tree Amplitudes -- 1.11.2 The Three-Gluon Tree-Amplitudes -- 1.11.3 Helicity Weight -- 1.11.4 Vanishing Graviton Tree-Amplitudes -- References -- 2 On-Shell Techniques for Tree-Level Amplitudes -- 2.1 Factorisation Properties of Tree-Level Amplitudes -- 2.1.1 Collinear Limits -- 2.1.2 Soft Theorems -- 2.1.3 Spinor-Helicity Formulation of Soft Theorems -- 2.1.4 Subleading Soft Theorems -- 2.2 BCFW Recursion for Gluon Amplitudes -- 2.2.1 Large z Falloff -- 2.3 BCFW Recursion for Gravity and Other Theories -- 2.4 MHV Amplitudes from the BCFW Recursion Relation -- 2.4.1 Proof of the Parke-Taylor Formula -- 2.4.2 The Four-Graviton MHV Amplitude -- 2.5 BCFW Recursion with Massive Particles -- 2.5.1 Four-Point Amplitudes with Gluons and MassiveScalars -- 2.6 Symmetries of Scattering Amplitudes -- 2.7 Double-Copy Relations for Gluon and Graviton Amplitudes -- 2.7.1 Lower-Point Examples -- 2.7.2 Colour-Kinematics Duality: A Four-Point Example -- 2.7.3 The Double-Copy Relation -- References -- 3 Loop Integrands and Amplitudes -- 3.1 Introduction to Loop Amplitudes -- 3.2 Unitarity and Cut Construction -- 3.3 Generalised Unitarity -- 3.4 Reduction Methods -- 3.4.1 Tensor Reduction.
3.4.2 Transverse Spaces and Transverse Integration -- 3.5 General Integral and Integrand Bases for One-Loop Amplitudes -- 3.5.1 The One-Loop Integral Basis -- 3.5.2 A One-Loop Integrand Basis in Four Dimensions -- 3.5.2.1 The Box Integrand in Four Dimensions -- 3.5.2.2 The Triangle Integrand in Four Dimensions -- 3.5.2.3 The Bubble Integrand in Four Dimensions -- 3.5.3 D-Dimensional Integrands and Rational Terms -- 3.5.3.1 The Pentagon Integrand -- 3.5.3.2 Extending the Box, Triangle and Bubble Integrand Basis to D=4-2ε Dimensions -- 3.5.4 Final Expressions for One-Loop Amplitudes in D-Dimensions -- 3.5.5 The Direct Extraction Method -- 3.6 Project: Rational Terms of the Four-Gluon Amplitude -- 3.7 Outlook: Rational Representations of the External Kinematics -- 3.8 Outlook: Multi-Loop Amplitude Methods -- References -- 4 Loop Integration Techniques and Special Functions -- 4.1 Introduction to Loop Integrals -- 4.2 Conventions and Basic Methods -- 4.2.1 Conventions for Minkowski-Space Integrals -- 4.2.2 Divergences and Dimensional Regularisation -- 4.2.3 Statement of the General Problem -- 4.2.4 Feynman Parametrisation -- 4.2.5 Summary -- 4.3 Mellin-Barnes Techniques -- 4.3.1 Mellin-Barnes Representation of the One-Loop Box Integral -- 4.3.2 Resolution of Singularities in ε -- 4.4 Special Functions, Differential Equations, and Transcendental Weight -- 4.4.1 A First Look at Special Functionsin Feynman Integrals -- 4.4.2 Special Functions from Differential Equations: The Dilogarithm -- 4.4.3 Comments on Properties of the Defining Differential Equations -- 4.4.4 Functional Identities and Symbol Method -- 4.4.5 What Differential Equations Do Feynman Integrals Satisfy? -- 4.5 Differential Equations for Feynman Integrals -- 4.5.1 Organisation of the Calculation in Terms of Integral Families -- 4.5.2 Obtaining the Differential Equations.
4.5.3 Dimensional Analysis and Integrability Check -- 4.5.4 Canonical Differential Equations -- 4.5.5 Solving the Differential Equations -- 4.6 Feynman Integrals of Uniform Transcendental Weight -- 4.6.1 Connection to Differential Equationsand (Unitarity) Cuts -- 4.6.2 Integrals with Constant Leading Singularities and Uniform Weight Conjecture -- References -- 5 Solutions to the Exercises -- Exercise 1.1: Manipulating Spinor Indices -- Exercise 1.2: Massless Dirac Equation and Weyl Spinors -- Exercise 1.3: SU(Nc) Identities -- Exercise 1.4: Casimir Operators -- Exercise 1.5: Spinor Identities -- Exercise 1.6: Lorentz Generators in the Spinor-Helicity Formalism -- Exercise 1.7: Gluon Polarisations -- Exercise 1.8: Colour-Ordered Feynman Rules -- Exercise 1.9: Independent Gluon Partial Amplitudes -- Exercise 1.10: The MHV3 Amplitude -- Exercise 1.11: Four-Point Quark-Gluon Scattering -- Exercise 2.1: The Vanishing Splitting Function Splittree+(x,a+,b+) -- Exercise 2.2: Soft Functions in the Spinor-Helicity Formalism -- Exercise 2.3: A qggg Amplitude from Collinear and Soft Limits -- Exercise 2.4: The Six-Gluon Split-Helicity NMHV Amplitude -- Exercise 2.5: Soft Limit of the Six-Gluon Split-Helicity Amplitude -- Exercise 2.6: Mixed-Helicity Four-Point Scalar-Gluon Amplitude -- Exercise 2.7: Conformal Algebra -- Exercise 2.8: Inversion and Special Conformal Transformations -- Exercise 2.9: Kinematical Jacobi Identity -- Exercise 2.10: Five-Point KLT Relation -- Exercise 3.1: The Four-Gluon Amplitude in N=4 Super-Symmetric Yang-Mills Theory -- Exercise 3.2: Quadruple Cuts of Five-Gluon MHV Scattering Amplitudes -- Exercise 3.3: Tensor Decomposition of the Bubble Integral -- Exercise 3.4: Spurious Loop-Momentum Space for the Box Integral -- Exercise 3.5: Reducibility of the Pentagon in Four Dimensions -- Exercise 3.6: Parametrising the Bubble Integrand.
Exercise 3.7: Dimension-Shifting Relation at One Loop -- Exercise 3.8: Projecting Out the Triangle Coefficients -- Exercise 3.9: Rank-One Triangle Reduction with Direct Extraction -- Exercise 3.10: Momentum-Twistor Parametrisations -- Exercise 4.1: The Massless Bubble Integral -- Exercise 4.2: Feynman Parametrisation -- Exercise 4.3: Taylor Series of the Log-Gamma Function -- Exercise 4.4: Finite Two-Dimensional Bubble Integral -- Exercise 4.5: Laurent Expansion of the Gamma Function -- Exercise 4.6: Massless One-Loop Box with Mellin-Barnes Parametrisation -- Exercise 4.7: Discontinuities -- Exercise 4.8: The Symbol of a Transcendental Function -- Exercise 4.9: Symbol Basis and Weight-Two Identities -- Exercise 4.10: Simplifying Functions Using the Symbol -- Exercise 4.11: The Massless Two-Loop Kite Integral -- Exercise 4.13: ``d log'' Form of the Massive Bubble Integrand with D=2 -- Exercise 4.14: An Integrand with Double Poles: The Two-Loop Kite in D=4 -- Exercise 4.16: The Box Integrals with the Differential Equations Method -- References -- A Conventions and Useful Formulae -- Reference.
author_facet Badger, Simon.
Henn, Johannes M.
Plefka, Jan C.
Zoia, Simone.
author_variant s b sb
author2 Henn, Johannes M.
Plefka, Jan C.
Zoia, Simone.
author2_variant j m h jm jmh
j c p jc jcp
s z sz
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Badger, Simon.
title Scattering Amplitudes in Quantum Field Theory.
title_full Scattering Amplitudes in Quantum Field Theory.
title_fullStr Scattering Amplitudes in Quantum Field Theory.
title_full_unstemmed Scattering Amplitudes in Quantum Field Theory.
title_auth Scattering Amplitudes in Quantum Field Theory.
title_new Scattering Amplitudes in Quantum Field Theory.
title_sort scattering amplitudes in quantum field theory.
series Lecture Notes in Physics Series ;
series2 Lecture Notes in Physics Series ;
publisher Springer International Publishing AG,
publishDate 2024
physical 1 online resource (312 pages)
edition First edition.
contents Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction and Foundations -- 1.1 Poincaré Group and Its Representations -- 1.2 Weyl and Dirac Spinors -- 1.3 Non-Abelian Gauge Theories -- 1.4 Feynman Rules for Non-Abelian Gauge Theories -- 1.5 Scalar QCD -- 1.6 Perturbative Quantum Gravity -- 1.7 Feynman Rules for Perturbative Quantum Gravity -- 1.8 Spinor-Helicity Formalism for Massless Particles -- 1.9 Polarisations of Massless Particles of Spin 12, 1 and 2 -- 1.10 Colour Decompositions for Gluon Amplitudes -- 1.10.1 Trace Basis -- 1.10.2 Structure Constant Basis -- 1.11 Colour-Ordered Amplitudes -- 1.11.1 Vanishing Tree Amplitudes -- 1.11.2 The Three-Gluon Tree-Amplitudes -- 1.11.3 Helicity Weight -- 1.11.4 Vanishing Graviton Tree-Amplitudes -- References -- 2 On-Shell Techniques for Tree-Level Amplitudes -- 2.1 Factorisation Properties of Tree-Level Amplitudes -- 2.1.1 Collinear Limits -- 2.1.2 Soft Theorems -- 2.1.3 Spinor-Helicity Formulation of Soft Theorems -- 2.1.4 Subleading Soft Theorems -- 2.2 BCFW Recursion for Gluon Amplitudes -- 2.2.1 Large z Falloff -- 2.3 BCFW Recursion for Gravity and Other Theories -- 2.4 MHV Amplitudes from the BCFW Recursion Relation -- 2.4.1 Proof of the Parke-Taylor Formula -- 2.4.2 The Four-Graviton MHV Amplitude -- 2.5 BCFW Recursion with Massive Particles -- 2.5.1 Four-Point Amplitudes with Gluons and MassiveScalars -- 2.6 Symmetries of Scattering Amplitudes -- 2.7 Double-Copy Relations for Gluon and Graviton Amplitudes -- 2.7.1 Lower-Point Examples -- 2.7.2 Colour-Kinematics Duality: A Four-Point Example -- 2.7.3 The Double-Copy Relation -- References -- 3 Loop Integrands and Amplitudes -- 3.1 Introduction to Loop Amplitudes -- 3.2 Unitarity and Cut Construction -- 3.3 Generalised Unitarity -- 3.4 Reduction Methods -- 3.4.1 Tensor Reduction.
3.4.2 Transverse Spaces and Transverse Integration -- 3.5 General Integral and Integrand Bases for One-Loop Amplitudes -- 3.5.1 The One-Loop Integral Basis -- 3.5.2 A One-Loop Integrand Basis in Four Dimensions -- 3.5.2.1 The Box Integrand in Four Dimensions -- 3.5.2.2 The Triangle Integrand in Four Dimensions -- 3.5.2.3 The Bubble Integrand in Four Dimensions -- 3.5.3 D-Dimensional Integrands and Rational Terms -- 3.5.3.1 The Pentagon Integrand -- 3.5.3.2 Extending the Box, Triangle and Bubble Integrand Basis to D=4-2ε Dimensions -- 3.5.4 Final Expressions for One-Loop Amplitudes in D-Dimensions -- 3.5.5 The Direct Extraction Method -- 3.6 Project: Rational Terms of the Four-Gluon Amplitude -- 3.7 Outlook: Rational Representations of the External Kinematics -- 3.8 Outlook: Multi-Loop Amplitude Methods -- References -- 4 Loop Integration Techniques and Special Functions -- 4.1 Introduction to Loop Integrals -- 4.2 Conventions and Basic Methods -- 4.2.1 Conventions for Minkowski-Space Integrals -- 4.2.2 Divergences and Dimensional Regularisation -- 4.2.3 Statement of the General Problem -- 4.2.4 Feynman Parametrisation -- 4.2.5 Summary -- 4.3 Mellin-Barnes Techniques -- 4.3.1 Mellin-Barnes Representation of the One-Loop Box Integral -- 4.3.2 Resolution of Singularities in ε -- 4.4 Special Functions, Differential Equations, and Transcendental Weight -- 4.4.1 A First Look at Special Functionsin Feynman Integrals -- 4.4.2 Special Functions from Differential Equations: The Dilogarithm -- 4.4.3 Comments on Properties of the Defining Differential Equations -- 4.4.4 Functional Identities and Symbol Method -- 4.4.5 What Differential Equations Do Feynman Integrals Satisfy? -- 4.5 Differential Equations for Feynman Integrals -- 4.5.1 Organisation of the Calculation in Terms of Integral Families -- 4.5.2 Obtaining the Differential Equations.
4.5.3 Dimensional Analysis and Integrability Check -- 4.5.4 Canonical Differential Equations -- 4.5.5 Solving the Differential Equations -- 4.6 Feynman Integrals of Uniform Transcendental Weight -- 4.6.1 Connection to Differential Equationsand (Unitarity) Cuts -- 4.6.2 Integrals with Constant Leading Singularities and Uniform Weight Conjecture -- References -- 5 Solutions to the Exercises -- Exercise 1.1: Manipulating Spinor Indices -- Exercise 1.2: Massless Dirac Equation and Weyl Spinors -- Exercise 1.3: SU(Nc) Identities -- Exercise 1.4: Casimir Operators -- Exercise 1.5: Spinor Identities -- Exercise 1.6: Lorentz Generators in the Spinor-Helicity Formalism -- Exercise 1.7: Gluon Polarisations -- Exercise 1.8: Colour-Ordered Feynman Rules -- Exercise 1.9: Independent Gluon Partial Amplitudes -- Exercise 1.10: The MHV3 Amplitude -- Exercise 1.11: Four-Point Quark-Gluon Scattering -- Exercise 2.1: The Vanishing Splitting Function Splittree+(x,a+,b+) -- Exercise 2.2: Soft Functions in the Spinor-Helicity Formalism -- Exercise 2.3: A qggg Amplitude from Collinear and Soft Limits -- Exercise 2.4: The Six-Gluon Split-Helicity NMHV Amplitude -- Exercise 2.5: Soft Limit of the Six-Gluon Split-Helicity Amplitude -- Exercise 2.6: Mixed-Helicity Four-Point Scalar-Gluon Amplitude -- Exercise 2.7: Conformal Algebra -- Exercise 2.8: Inversion and Special Conformal Transformations -- Exercise 2.9: Kinematical Jacobi Identity -- Exercise 2.10: Five-Point KLT Relation -- Exercise 3.1: The Four-Gluon Amplitude in N=4 Super-Symmetric Yang-Mills Theory -- Exercise 3.2: Quadruple Cuts of Five-Gluon MHV Scattering Amplitudes -- Exercise 3.3: Tensor Decomposition of the Bubble Integral -- Exercise 3.4: Spurious Loop-Momentum Space for the Box Integral -- Exercise 3.5: Reducibility of the Pentagon in Four Dimensions -- Exercise 3.6: Parametrising the Bubble Integrand.
Exercise 3.7: Dimension-Shifting Relation at One Loop -- Exercise 3.8: Projecting Out the Triangle Coefficients -- Exercise 3.9: Rank-One Triangle Reduction with Direct Extraction -- Exercise 3.10: Momentum-Twistor Parametrisations -- Exercise 4.1: The Massless Bubble Integral -- Exercise 4.2: Feynman Parametrisation -- Exercise 4.3: Taylor Series of the Log-Gamma Function -- Exercise 4.4: Finite Two-Dimensional Bubble Integral -- Exercise 4.5: Laurent Expansion of the Gamma Function -- Exercise 4.6: Massless One-Loop Box with Mellin-Barnes Parametrisation -- Exercise 4.7: Discontinuities -- Exercise 4.8: The Symbol of a Transcendental Function -- Exercise 4.9: Symbol Basis and Weight-Two Identities -- Exercise 4.10: Simplifying Functions Using the Symbol -- Exercise 4.11: The Massless Two-Loop Kite Integral -- Exercise 4.13: ``d log'' Form of the Massive Bubble Integrand with D=2 -- Exercise 4.14: An Integrand with Double Poles: The Two-Loop Kite in D=4 -- Exercise 4.16: The Box Integrals with the Differential Equations Method -- References -- A Conventions and Useful Formulae -- Reference.
isbn 3-031-46987-9
3-031-46986-0
callnumber-first Q - Science
callnumber-subject QC - Physics
callnumber-label QC793-793
callnumber-sort QC 3793 3793.5
illustrated Not Illustrated
oclc_num 1416698436
work_keys_str_mv AT badgersimon scatteringamplitudesinquantumfieldtheory
AT hennjohannesm scatteringamplitudesinquantumfieldtheory
AT plefkajanc scatteringamplitudesinquantumfieldtheory
AT zoiasimone scatteringamplitudesinquantumfieldtheory
status_str n
ids_txt_mv (CKB)29527082000041
(MiAaPQ)EBC31063558
(Au-PeEL)EBL31063558
(OCoLC)1416698436
(EXLCZ)9929527082000041
carrierType_str_mv cr
hierarchy_parent_title Lecture Notes in Physics Series ; v.1021
is_hierarchy_title Scattering Amplitudes in Quantum Field Theory.
container_title Lecture Notes in Physics Series ; v.1021
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1801899439031320576
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>07899nam a22004093i 4500</leader><controlfield tag="001">993646964104498</controlfield><controlfield tag="005">20240131215442.0</controlfield><controlfield tag="006">m o d | </controlfield><controlfield tag="007">cr#|||||||||||</controlfield><controlfield tag="008">240115s2024 xx o ||||0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-031-46987-9</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)29527082000041</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC31063558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL31063558</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1416698436</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)9929527082000041</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">MiAaPQ</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="e">pn</subfield><subfield code="c">MiAaPQ</subfield><subfield code="d">MiAaPQ</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QC793-793.5</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Badger, Simon.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Scattering Amplitudes in Quantum Field Theory.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham :</subfield><subfield code="b">Springer International Publishing AG,</subfield><subfield code="c">2024.</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2024.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (312 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Physics Series ;</subfield><subfield code="v">v.1021</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction and Foundations -- 1.1 Poincaré Group and Its Representations -- 1.2 Weyl and Dirac Spinors -- 1.3 Non-Abelian Gauge Theories -- 1.4 Feynman Rules for Non-Abelian Gauge Theories -- 1.5 Scalar QCD -- 1.6 Perturbative Quantum Gravity -- 1.7 Feynman Rules for Perturbative Quantum Gravity -- 1.8 Spinor-Helicity Formalism for Massless Particles -- 1.9 Polarisations of Massless Particles of Spin 12, 1 and 2 -- 1.10 Colour Decompositions for Gluon Amplitudes -- 1.10.1 Trace Basis -- 1.10.2 Structure Constant Basis -- 1.11 Colour-Ordered Amplitudes -- 1.11.1 Vanishing Tree Amplitudes -- 1.11.2 The Three-Gluon Tree-Amplitudes -- 1.11.3 Helicity Weight -- 1.11.4 Vanishing Graviton Tree-Amplitudes -- References -- 2 On-Shell Techniques for Tree-Level Amplitudes -- 2.1 Factorisation Properties of Tree-Level Amplitudes -- 2.1.1 Collinear Limits -- 2.1.2 Soft Theorems -- 2.1.3 Spinor-Helicity Formulation of Soft Theorems -- 2.1.4 Subleading Soft Theorems -- 2.2 BCFW Recursion for Gluon Amplitudes -- 2.2.1 Large z Falloff -- 2.3 BCFW Recursion for Gravity and Other Theories -- 2.4 MHV Amplitudes from the BCFW Recursion Relation -- 2.4.1 Proof of the Parke-Taylor Formula -- 2.4.2 The Four-Graviton MHV Amplitude -- 2.5 BCFW Recursion with Massive Particles -- 2.5.1 Four-Point Amplitudes with Gluons and MassiveScalars -- 2.6 Symmetries of Scattering Amplitudes -- 2.7 Double-Copy Relations for Gluon and Graviton Amplitudes -- 2.7.1 Lower-Point Examples -- 2.7.2 Colour-Kinematics Duality: A Four-Point Example -- 2.7.3 The Double-Copy Relation -- References -- 3 Loop Integrands and Amplitudes -- 3.1 Introduction to Loop Amplitudes -- 3.2 Unitarity and Cut Construction -- 3.3 Generalised Unitarity -- 3.4 Reduction Methods -- 3.4.1 Tensor Reduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.4.2 Transverse Spaces and Transverse Integration -- 3.5 General Integral and Integrand Bases for One-Loop Amplitudes -- 3.5.1 The One-Loop Integral Basis -- 3.5.2 A One-Loop Integrand Basis in Four Dimensions -- 3.5.2.1 The Box Integrand in Four Dimensions -- 3.5.2.2 The Triangle Integrand in Four Dimensions -- 3.5.2.3 The Bubble Integrand in Four Dimensions -- 3.5.3 D-Dimensional Integrands and Rational Terms -- 3.5.3.1 The Pentagon Integrand -- 3.5.3.2 Extending the Box, Triangle and Bubble Integrand Basis to D=4-2ε Dimensions -- 3.5.4 Final Expressions for One-Loop Amplitudes in D-Dimensions -- 3.5.5 The Direct Extraction Method -- 3.6 Project: Rational Terms of the Four-Gluon Amplitude -- 3.7 Outlook: Rational Representations of the External Kinematics -- 3.8 Outlook: Multi-Loop Amplitude Methods -- References -- 4 Loop Integration Techniques and Special Functions -- 4.1 Introduction to Loop Integrals -- 4.2 Conventions and Basic Methods -- 4.2.1 Conventions for Minkowski-Space Integrals -- 4.2.2 Divergences and Dimensional Regularisation -- 4.2.3 Statement of the General Problem -- 4.2.4 Feynman Parametrisation -- 4.2.5 Summary -- 4.3 Mellin-Barnes Techniques -- 4.3.1 Mellin-Barnes Representation of the One-Loop Box Integral -- 4.3.2 Resolution of Singularities in ε -- 4.4 Special Functions, Differential Equations, and Transcendental Weight -- 4.4.1 A First Look at Special Functionsin Feynman Integrals -- 4.4.2 Special Functions from Differential Equations: The Dilogarithm -- 4.4.3 Comments on Properties of the Defining Differential Equations -- 4.4.4 Functional Identities and Symbol Method -- 4.4.5 What Differential Equations Do Feynman Integrals Satisfy? -- 4.5 Differential Equations for Feynman Integrals -- 4.5.1 Organisation of the Calculation in Terms of Integral Families -- 4.5.2 Obtaining the Differential Equations.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.5.3 Dimensional Analysis and Integrability Check -- 4.5.4 Canonical Differential Equations -- 4.5.5 Solving the Differential Equations -- 4.6 Feynman Integrals of Uniform Transcendental Weight -- 4.6.1 Connection to Differential Equationsand (Unitarity) Cuts -- 4.6.2 Integrals with Constant Leading Singularities and Uniform Weight Conjecture -- References -- 5 Solutions to the Exercises -- Exercise 1.1: Manipulating Spinor Indices -- Exercise 1.2: Massless Dirac Equation and Weyl Spinors -- Exercise 1.3: SU(Nc) Identities -- Exercise 1.4: Casimir Operators -- Exercise 1.5: Spinor Identities -- Exercise 1.6: Lorentz Generators in the Spinor-Helicity Formalism -- Exercise 1.7: Gluon Polarisations -- Exercise 1.8: Colour-Ordered Feynman Rules -- Exercise 1.9: Independent Gluon Partial Amplitudes -- Exercise 1.10: The MHV3 Amplitude -- Exercise 1.11: Four-Point Quark-Gluon Scattering -- Exercise 2.1: The Vanishing Splitting Function Splittree+(x,a+,b+) -- Exercise 2.2: Soft Functions in the Spinor-Helicity Formalism -- Exercise 2.3: A qggg Amplitude from Collinear and Soft Limits -- Exercise 2.4: The Six-Gluon Split-Helicity NMHV Amplitude -- Exercise 2.5: Soft Limit of the Six-Gluon Split-Helicity Amplitude -- Exercise 2.6: Mixed-Helicity Four-Point Scalar-Gluon Amplitude -- Exercise 2.7: Conformal Algebra -- Exercise 2.8: Inversion and Special Conformal Transformations -- Exercise 2.9: Kinematical Jacobi Identity -- Exercise 2.10: Five-Point KLT Relation -- Exercise 3.1: The Four-Gluon Amplitude in N=4 Super-Symmetric Yang-Mills Theory -- Exercise 3.2: Quadruple Cuts of Five-Gluon MHV Scattering Amplitudes -- Exercise 3.3: Tensor Decomposition of the Bubble Integral -- Exercise 3.4: Spurious Loop-Momentum Space for the Box Integral -- Exercise 3.5: Reducibility of the Pentagon in Four Dimensions -- Exercise 3.6: Parametrising the Bubble Integrand.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Exercise 3.7: Dimension-Shifting Relation at One Loop -- Exercise 3.8: Projecting Out the Triangle Coefficients -- Exercise 3.9: Rank-One Triangle Reduction with Direct Extraction -- Exercise 3.10: Momentum-Twistor Parametrisations -- Exercise 4.1: The Massless Bubble Integral -- Exercise 4.2: Feynman Parametrisation -- Exercise 4.3: Taylor Series of the Log-Gamma Function -- Exercise 4.4: Finite Two-Dimensional Bubble Integral -- Exercise 4.5: Laurent Expansion of the Gamma Function -- Exercise 4.6: Massless One-Loop Box with Mellin-Barnes Parametrisation -- Exercise 4.7: Discontinuities -- Exercise 4.8: The Symbol of a Transcendental Function -- Exercise 4.9: Symbol Basis and Weight-Two Identities -- Exercise 4.10: Simplifying Functions Using the Symbol -- Exercise 4.11: The Massless Two-Loop Kite Integral -- Exercise 4.13: ``d log'' Form of the Massive Bubble Integrand with D=2 -- Exercise 4.14: An Integrand with Double Poles: The Two-Loop Kite in D=4 -- Exercise 4.16: The Box Integrals with the Differential Equations Method -- References -- A Conventions and Useful Formulae -- Reference.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Henn, Johannes M.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plefka, Jan C.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zoia, Simone.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-031-46986-0</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture notes in physics</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-06-15 03:33:10 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2024-01-08 18:20:03 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5352658260004498&amp;Force_direct=true</subfield><subfield code="Z">5352658260004498</subfield><subfield code="b">Available</subfield><subfield code="8">5352658260004498</subfield></datafield></record></collection>