Basic Modeling and Theory of Creep of Metallic Materials / / by Rolf Sandström.

This open access book features an in-depth exploration of the intricate creep behavior exhibited by metallic materials, with a specific focus on elucidating the underlying mechanical properties governing their response at elevated temperatures, particularly in the context of polycrystalline alloys....

Full description

Saved in:
Bibliographic Details
Superior document:Springer Series in Materials Science, 339
:
Place / Publishing House:Cham : : Springer Nature Switzerland :, Imprint: Springer,, 2024.
Year of Publication:2024
Edition:1st ed. 2024.
Language:English
Series:Springer Series in Materials Science, 339
Physical Description:1 online resource (317 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Preface
  • Contents
  • 1 The Role of Fundamental Modeling
  • 1.1 Background
  • 1.2 Description
  • 1.3 Objectives
  • 1.4 Layout
  • 1.5 Supplementary Material
  • References
  • 2 Stationary Creep
  • 2.1 The Creep Process
  • 2.2 Empirical Models of Secondary Creep
  • 2.3 Dislocation Model
  • 2.3.1 Work Hardening
  • 2.3.2 Dynamic Recovery
  • 2.3.3 Static Recovery
  • 2.3.4 Accumulated Dislocation Model
  • 2.4 The cL Parameter
  • 2.5 Secondary Creep Rate
  • 2.6 Dislocation Mobility
  • 2.6.1 Climb Mobility
  • 2.6.2 The Glide Mobility
  • 2.6.3 Cross-Slip Mobility
  • 2.6.4 The Climb Glide Mobility
  • 2.7 Application to Aluminum
  • 2.8 Application to Nickel
  • 2.9 Summary
  • References
  • 3 Stress Strain Curves
  • 3.1 General
  • 3.2 Empirical Methods to Describe Stress Strain Curves
  • 3.3 Basic Model
  • 3.3.1 The Model
  • 3.3.2 Application to Parent Metal
  • 3.3.3 Application to Welds
  • 3.4 The ω Parameter in Dynamic Recovery
  • 3.5 Summary
  • References
  • 4 Primary Creep
  • 4.1 General
  • 4.2 Empirical Models for Creep Strain Curves
  • 4.3 Dislocation Controlled Primary Creep
  • 4.4 Stress Adaptation
  • 4.4.1 Model
  • 4.4.2 Numerical Integration
  • 4.4.3 Applications
  • 4.5 12% Cr Steels
  • 4.5.1 Dislocation Model
  • 4.5.2 Simulated Creep Curves
  • 4.6 Summary
  • References
  • 5 Creep with Low Stress Exponents
  • 5.1 General
  • 5.2 Model for Diffusional Creep
  • 5.3 Grain Boundary Creep
  • 5.4 Constrained Grain Boundary Creep
  • 5.5 Primary Creep at Low Stresses
  • 5.6 Creep at Low Stresses in an Austenitic Stainless Steel
  • 5.7 Creep in Aluminium at Very Low Stresses (Harper-Dorn Creep)
  • 5.8 Creep in Copper at Low Stresses
  • 5.8.1 Creep of Cu-OFP at 600 °C
  • 5.8.2 Creep of Copper at 820 °C
  • 5.8.3 Creep of Copper at 480 °C
  • 5.9 Summary
  • References
  • 6 Solid Solution Hardening
  • 6.1 General
  • 6.2 The Classical Picture.
  • 6.2.1 Observations
  • 6.2.2 Issues with the Classical Picture
  • 6.3 Modeling of Solid Solution Hardening. Slowly Diffusing Elements
  • 6.3.1 Lattice and Modulus Misfit
  • 6.3.2 Solute Atmospheres
  • 6.4 Drag Stress
  • 6.5 Modeling of Solid Solution Hardening. Fast Diffusing Elements
  • 6.6 Summary
  • References
  • 7 Precipitation Hardening
  • 7.1 General
  • 7.2 Previous Models for the Influence of Particles on the Creep Strength
  • 7.2.1 Threshold Stress
  • 7.2.2 Orowan Model
  • 7.2.3 The Role of the Energy Barrier
  • 7.3 Precipitation Hardening Based on Time Control
  • 7.4 Application of the Precipitation Hardening Model
  • 7.4.1 Analyzed Materials
  • 7.4.2 Pure Copper
  • 7.4.3 Cu-Co Alloys
  • 7.5 Summary
  • References
  • 8 Cells and Subgrains. The Role of Cold Work
  • 8.1 General
  • 8.2 Modeling of Subgrain Formation
  • 8.2.1 The Stress from Dislocations
  • 8.2.2 Formation of Subgrains During Creep
  • 8.2.3 Cell Formation at Constant Strain Rate
  • 8.3 Influence of Cold Work on the Creep Rate
  • 8.4 Formation of a Dislocation Back Stress
  • 8.5 Summary
  • References
  • 9 Grain Boundary Sliding
  • 9.1 General
  • 9.2 Empirical Modeling of GBS During Superplasticity
  • 9.3 Grain Boundary Sliding in Copper
  • 9.4 Superplasticity
  • 9.5 Summary
  • References
  • 10 Cavitation
  • 10.1 General
  • 10.2 Empirical Cavity Nucleation and Growth Models
  • 10.3 Cavitation in 9% Cr Steels
  • 10.4 Basic Model for Cavity Nucleation
  • 10.4.1 Thermodynamic Considerations
  • 10.4.2 Strain Dependence
  • 10.4.3 Comparison to Experiments for Copper
  • 10.4.4 Comparison to Experiment for Austenitic Stainless Steels
  • 10.5 Models for Cavity Growth
  • 10.5.1 Unconstrained Cavity Growth Model
  • 10.5.2 Constrained Cavity Growth
  • 10.5.3 Strain Controlled Cavity Growth
  • 10.5.4 Growth Due to Grain Boundary Sliding
  • 10.6 Summary
  • References.
  • 11 The Role of Cavitation in Creep-Fatigue Interaction
  • 11.1 General
  • 11.2 Empirical Principles for Development of Creep-Fatigue Damage
  • 11.2.1 Fatigue and Creep Damage
  • 11.2.2 Loops During Cyclic Loading
  • 11.3 Deformation During Cyclic Loading
  • 11.3.1 Basic Model for Hysteresis Loops
  • 11.3.2 Application of the Cycling Model
  • 11.4 Cavitation
  • 11.4.1 Nucleation of Cavities
  • 11.4.2 Cavity Growth
  • 11.5 Summary
  • References
  • 12 Tertiary Creep
  • 12.1 General
  • 12.2 Empirical Models for Tertiary Creep and Continuum Damage Mechanics
  • 12.2.1 Models for Tertiary Creep
  • 12.2.2 Continuum Damage Mechanics (CDM)
  • 12.3 Particle Coarsening
  • 12.4 Dislocation Strengthening During Tertiary Creep
  • 12.4.1 The Role of Substructure During Tertiary Creep
  • 12.4.2 Accelerated Recovery Model
  • 12.5 Necking
  • 12.5.1 Hart's Criterion
  • 12.5.2 Use of Omega Model
  • 12.5.3 Basic Dislocation Model
  • 12.5.4 Multiaxial Stress States
  • 12.6 Summary
  • References
  • 13 Creep Ductility
  • 13.1 Introduction
  • 13.2 Empirical Ductility Models
  • 13.3 Basic Ductility Methods
  • 13.3.1 Brittle Rupture
  • 13.3.2 Ductile Rupture
  • 13.4 The Role of Multiaxiality
  • 13.4.1 Diffusion Controlled Growth
  • 13.4.2 Strain Controlled Growth
  • 13.4.3 Growth Due to Grain Boundary Sliding (GBS)
  • 13.4.4 Comparison of Models
  • 13.5 Summary
  • References
  • 14 Extrapolation
  • 14.1 Introduction
  • 14.2 Empirical Extrapolation Analysis
  • 14.2.1 Basic TTP Analysis
  • 14.2.2 The ECCC Post-assessment Tests
  • 14.2.3 Use of Neural Network (NN)
  • 14.3 Error Analysis in Extrapolation
  • 14.3.1 Model for Error Analysis
  • 14.3.2 Error Analysis with PATs
  • 14.3.3 Error Analysis with NN
  • 14.4 Basic Modeling of Creep Rupture Curves
  • 14.4.1 General
  • 14.4.2 Secondary Creep Rate
  • 14.4.3 Creep Strain Curves
  • 14.4.4 Cavitation
  • 14.4.5 Rupture Criteria.
  • 14.4.6 Extensive Extrapolation of the Creep Rate for Cu
  • 14.4.7 Creep Rupture Predictions for Austenitic Stainless Steels
  • 14.5 Summary
  • Appendix: Derivatives in Neural Network Models (Reproduced from [37] with Permission)
  • References.