Repetitive DNA Sequences / / edited by Andrew G. Clark [and three others].

Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and u...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Basel : : MDPI - Multidisciplinary Digital Publishing Institute,, 2020.
Year of Publication:2020
Language:English
Physical Description:1 online resource (206 pages) :; illustrations
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993602804704498
ctrlnum (CKB)4100000011302115
(NjHacI)994100000011302115
(EXLCZ)994100000011302115
collection bib_alma
record_format marc
spelling Repetitive DNA Sequences / edited by Andrew G. Clark [and three others].
Basel : MDPI - Multidisciplinary Digital Publishing Institute, 2020.
1 online resource (206 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.
Includes bibliographical references.
Genomes Congresses.
3-03928-366-9
Clark, Andrew G., editor.
Dion-Côté, Anne-Marie, editor.
Lower, Sarah E., editor.
Barbash, Daniel A., editor.
language English
format eBook
author2 Clark, Andrew G.,
Dion-Côté, Anne-Marie,
Lower, Sarah E.,
Barbash, Daniel A.,
author_facet Clark, Andrew G.,
Dion-Côté, Anne-Marie,
Lower, Sarah E.,
Barbash, Daniel A.,
author2_variant a g c ag agc
a m d c amdc
s e l se sel
d a b da dab
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
title Repetitive DNA Sequences /
spellingShingle Repetitive DNA Sequences /
title_full Repetitive DNA Sequences / edited by Andrew G. Clark [and three others].
title_fullStr Repetitive DNA Sequences / edited by Andrew G. Clark [and three others].
title_full_unstemmed Repetitive DNA Sequences / edited by Andrew G. Clark [and three others].
title_auth Repetitive DNA Sequences /
title_new Repetitive DNA Sequences /
title_sort repetitive dna sequences /
publisher MDPI - Multidisciplinary Digital Publishing Institute,
publishDate 2020
physical 1 online resource (206 pages) : illustrations
isbn 3-03928-366-9
callnumber-first Q - Science
callnumber-subject QH - Natural History and Biology
callnumber-label QH447
callnumber-sort QH 3447 R474 42020
genre_facet Congresses.
illustrated Illustrated
dewey-hundreds 500 - Science
dewey-tens 570 - Life sciences; biology
dewey-ones 572 - Biochemistry
dewey-full 572.8
dewey-sort 3572.8
dewey-raw 572.8
dewey-search 572.8
work_keys_str_mv AT clarkandrewg repetitivednasequences
AT dioncoteannemarie repetitivednasequences
AT lowersarahe repetitivednasequences
AT barbashdaniela repetitivednasequences
status_str n
ids_txt_mv (CKB)4100000011302115
(NjHacI)994100000011302115
(EXLCZ)994100000011302115
carrierType_str_mv cr
is_hierarchy_title Repetitive DNA Sequences /
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1796653186058027009
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02635nam a2200325 i 4500</leader><controlfield tag="001">993602804704498</controlfield><controlfield tag="005">20230623185434.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230623s2020 sz a ob 000 0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000011302115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)994100000011302115</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000011302115</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QH447</subfield><subfield code="b">.R474 2020</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">572.8</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Repetitive DNA Sequences /</subfield><subfield code="c">edited by Andrew G. Clark [and three others].</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel :</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute,</subfield><subfield code="c">2020.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (206 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Repetitive DNA is ubiquitous in eukaryotic genomes, and, in many species, comprises the bulk of the genome. Repeats include transposable elements that can self-mobilize and disperse around the genome, and tandemly-repeated satellite DNAs that increase in copy number due to replication slippage and unequal crossing over. Despite their abundance, repetitive DNA is often ignored in genomic studies due to technical challenges in their identification, assembly, and quantification. New technologies and methods are now providing the unprecedented power to analyze repetitive DNAs across diverse taxa. Repetitive DNA is of particular interest because it can represent distinct modes of genome evolution. Some repetitive DNA forms essential genome structures, such as telomeres and centromeres, which are required for proper chromosome maintenance and segregation, whereas others form piRNA clusters that regulate transposable elements; thus, these elements are expected to evolve under purifying selection. In contrast, other repeats evolve selfishly and produce genetic conflicts with their host species that drive adaptive evolution of host defense systems. However, the majority of repeats likely accumulate in eukaryotes in the absence of selection due to mechanisms of transposition and unequal crossing over. Even these neutral repeats may indirectly influence genome evolution as they reach high abundance. In this Special Issue, the contributing authors explore these questions from a range of perspectives.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Genomes</subfield><subfield code="v">Congresses.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03928-366-9</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Clark, Andrew G.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dion-Côté, Anne-Marie,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lower, Sarah E.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Barbash, Daniel A.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-07-06 03:27:10 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2020-06-20 22:16:43 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338866260004498&amp;Force_direct=true</subfield><subfield code="Z">5338866260004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338866260004498</subfield></datafield></record></collection>