Numerical Modeling Of Superconducting Applications : : Simulation Of Electromagnetics, Thermal Stability, Thermo-hydraulics And Mechanical Effects In Large-scale Superconducting Devices / / Bertrand Dutoit, Francesco Grilli and Frederic Sirois.

This book aims to present an introduction to numerical modeling of different aspects of large-scale superconducting applications: electromagnetics, thermal, mechanics and thermo-hydraulics. The importance of computational modeling to advance current superconductor research cannot be overlooked, espe...

Full description

Saved in:
Bibliographic Details
Superior document:World Scientific Series In Applications Of Superconductivity And Related Phenomena ; v.4
VerfasserIn:
TeilnehmendeR:
Place / Publishing House:Singapore : : World Scientific Publishing Company,, 2023.
Year of Publication:2023
Language:English
Series:World Scientific Series In Applications Of Superconductivity And Related Phenomena
Physical Description:1 online resource (328 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Title page
  • Copyright
  • Contents
  • Introduction
  • 1. Electromagnetic Modeling of Superconductors
  • 1.1. Introduction
  • 1.1.1. Maxwell equations in quasimagnetostatics
  • 1.1.1.1. Faraday's integral law
  • 1.1.2. Macroscopic electromagnetic properties of superconductors
  • 1.1.3. Vector and scalar potentials and their relation to the sources
  • 1.1.3.1. Long straight conductors (infinite)
  • 1.1.3.2. Axial symmetry
  • 1.1.4. Solution to the Laplace equation for electrostatics
  • 1.1.5. Integral relation between B and J
  • 1.1.6. Current potentials
  • 1.1.6.1. Divergence-free gauge of T
  • 1.1.6.2. Magnetic-field gauge
  • 1.1.6.3. Current potential as magnetization
  • 1.1.7. Calculation of local dissipation and AC loss
  • 1.1.7.1. Fundamental aspects of the local loss dissipation
  • 1.1.7.2. Hysteresis loss of magnetic materials
  • 1.1.7.3. Conductors and superconductors under uniform applied fields
  • 1.2. Analytical Formulas and Main Electromagnetic Behavior
  • 1.2.1. Hysteresis currents
  • 1.2.1.1. Infinite cylinder under axial applied magnetic field
  • 1.2.1.2. Infinite slab under parallel applied field
  • 1.2.1.3. Circular wire with transport current
  • 1.2.1.4. Elliptical wire with transport current
  • 1.2.1.5. Thin strip under applied magnetic field
  • 1.2.1.6. Thin strip with transport current
  • 1.2.1.7. Universal scaling law for the power-law E(J) relation
  • 1.2.2. Eddy currents
  • 1.2.2.1. Low-frequency limit
  • 1.2.2.2. Whole frequency range
  • 1.2.3. Coupling currents
  • 1.2.3.1. On the decomposition of AC loss into eddy, coupling, and superconductor contributions
  • 1.2.3.2. Two slab filaments connected by normal conductor
  • 1.3. Numerical Methods
  • 1.3.1. Finite element methods
  • 1.3.1.1. H formulation
  • 1.3.1.2. A-ϕ formulation
  • 1.3.1.3. T-Ω formulation
  • 1.3.1.4. Combined formulations.
  • 1.3.2. Variational methods
  • 1.3.2.1. J-ϕ formulation
  • 1.3.2.2. T formulation
  • 1.3.2.3. H formulation
  • 1.3.2.4. H-ψ formulation
  • 1.3.2.5. Interaction with nonlinear magnetic materials
  • 1.3.3. Integro-differential methods
  • 1.3.3.1. J integral formulation
  • 1.3.3.2. T integral formulation
  • 1.3.4. Spectral methods
  • 1.3.5. Particular issues for three dimensions
  • 1.4. Modeling of Power Applications
  • 1.4.1. Numerical modeling of individual wires
  • 1.4.1.1. Dependence of Jc on magnetic field
  • 1.4.1.2. Dependence of Jc on position
  • 1.4.1.3. Simulation of magnetic materials
  • 1.4.1.4. Dynamic resistance
  • 1.4.2. Interacting tapes
  • 1.4.3. 3D modeling
  • 1.4.4. Rotating machines
  • Acknowledgments
  • References
  • 2. Introduction to Stability and Quench Protection
  • 2.1. Margins to Quench
  • 2.1.1. Minimum quench energy
  • 2.1.1.1. Numerical modeling of MQE
  • 2.1.1.2. MQE simulations
  • 2.1.2. Margins in magnet load line
  • 2.2. Classifying Quenches
  • 2.2.1. Devred's classification of quenches
  • 2.2.2. Wilson's classification of quenches
  • 2.3. Engineering Methodology in Quench Protection
  • 2.3.1. Model
  • 2.3.2. Design
  • 2.3.3. Simulation
  • 2.3.4. Experiment
  • 2.4. Numerical Modeling of a Quench Event
  • 2.4.1. Input and output of a quench simulation
  • 2.4.1.1. Magnetic flux density distribution
  • 2.4.1.2. Operation conditions
  • 2.4.1.3. Post-processing data
  • 2.4.2. Spatial and temporal discretization in a FEM based tool
  • 2.4.2.1. Spatial discretization
  • 2.4.2.2. Temporal discretization
  • 2.4.3. Triggering the quench in the simulation of an HTS magnet
  • 2.4.4. Reducing modeling domain to speed up quench simulations for HTS magnets
  • 2.4.4.1. Modeling domain
  • 2.4.4.2. Simulation results
  • 2.4.5. Quench analysis of an R&amp
  • D REBCO magnet.
  • 2.5. Design of Quench Protection Heaters for Nb3Sn Accelerator Magnets
  • 2.5.1. R&amp
  • D of Nb3Sn quadrupole magnet
  • 2.5.2. Heater technology and target variables for optimization
  • 2.5.3. Modeling the heater's efficiency
  • 2.5.4. Guidelines for parametric optimization of heaters
  • 2.5.5. Simulations for the LHQ heater design
  • 2.5.6. Testing the designed heater layout
  • Acknowledgements
  • References
  • 3. Finite Element Structural Modeling
  • 3.1. Introduction
  • 3.2. HTS Tapes and Cables
  • 3.3. FEA Research Areas
  • 3.3.1. Single-tape simulations
  • 3.3.2. Cable simulations
  • 3.4. Modeling Techniques for Single Tapes
  • 3.4.1. Finite element software and settings
  • 3.4.2. REBCO-coated conductor architecture
  • 3.4.3. Element types
  • 3.4.4. Meshing
  • 3.4.5. Material properties
  • 3.4.6. Boundary conditions and loads
  • 3.5. Modeling Techniques for Cables
  • 3.5.1. Model simplifications
  • 3.5.2. Element types
  • 3.5.3. Meshing
  • 3.5.4. Material properties
  • 3.5.5. Contact relationships
  • 3.5.6. Boundary conditions and loads
  • 3.6. Postprocessing and Results
  • 3.6.1. Simulation output results
  • 3.6.2. Critical current prediction
  • 3.6.3. Single-tape results
  • 3.6.4. Cable results
  • References
  • 4. Thermal-Hydraulics of Superconducting Magnets
  • 4.1. Applications of Superconducting Magnets and Related Topologies/Geometries
  • 4.1.1. Magnetically confined nuclear fusion experiments
  • 4.1.2. Particle accelerators
  • 4.1.3. Others
  • 4.1.3.1. Gyrotrons
  • 4.1.3.2. Medical
  • 4.1.3.3. Power grid
  • 4.2. Superconducting Magnet Cooling Methods
  • 4.2.1. Cooling fluids
  • 4.2.1.1. Helium
  • 4.2.1.2. Hydrogen
  • 4.2.1.3. Neon
  • 4.2.1.4. Nitrogen
  • 4.2.2. Cooling options
  • 4.2.2.1. Forced flow
  • 4.2.2.2. Conduction
  • 4.2.2.3. Pool
  • 4.2.3. Cryoplant description
  • 4.2.3.1. Refrigerator
  • 4.2.3.2. SHe loop.
  • 4.2.3.3. Interfaces
  • 4.2.4. Solid properties
  • 4.2.4.1. Metals
  • 4.2.4.2. Superconductor
  • 4.2.4.3. Insulations
  • 4.3. Modeling
  • 4.3.1. Space scales
  • 4.3.2. Time scales
  • 4.4. Forced-Flow CICC Superconductor Hydraulics
  • 4.4.1. Multiple flow regions
  • 4.4.1.1. Bundle
  • 4.4.1.2. Hole
  • 4.4.1.3. Coupling between bundle and hole
  • 4.4.2. Friction factors
  • 4.5. Forced-Flow CICC Thermal-Hydraulics
  • 4.5.1. Heat transfer coolant-solids
  • 4.5.2. Heat transfer between different solids
  • 4.5.3. Heat transfer between different coolant regions
  • 4.6. Heat Transfer Mechanisms in the Magnet
  • 4.6.1. Heat transfer within the winding
  • 4.6.2. Heat transfer within the magnet structures
  • 4.6.2.1. Cooling of the coil casing
  • 4.6.3. Heat transfer between structures and winding
  • 4.6.3.1. Issues in the ground insulation modeling
  • 4.7. Relevant TH Transients
  • 4.7.1. Cool down
  • 4.7.2. Normal operation
  • 4.7.3. Off-normal operation
  • 4.7.3.1. Stability and quench
  • 4.7.3.2. Fast discharge/current ramps
  • 4.7.3.3. Loss of flow/coolant accidents
  • 4.8. Available Models and Experimental Facilities
  • 4.8.1. Thermal-hydraulic codes
  • 4.8.1.1. Venecia
  • 4.8.1.2. 4C
  • 4.8.1.3. Supermagnet
  • 4.8.1.4. Others
  • 4.8.2. Conductor test facilities
  • 4.8.3. Magnets test facilities
  • 4.8.4. Available experiments
  • 4.8.4.1. Superconducting tokamaks in operation
  • 4.8.4.2. Superconducting stellarators in operation
  • References
  • Index.