Analysis and Optimisation of a New Differential Steering Concept / / Márton Kuslits.

The emergence of electric drives opens up new opportunities in vehicle design. For example, powerful in-wheel motors pro -vide unprecedented flexibility in chassis design and are suitable for distributed drive solutions, although implying non-trivial vehicle dynamics control problems. This work aims...

Full description

Saved in:
Bibliographic Details
VerfasserIn:
Place / Publishing House:Berlin, Germany : : Logos Verlag Berlin GmbH,, 2022.
Year of Publication:2022
Language:English
Physical Description:1 online resource (147 pages) :; illustrations
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993581038604498
ctrlnum (CKB)5580000000512028
(NjHacI)995580000000512028
(EXLCZ)995580000000512028
collection bib_alma
record_format marc
spelling Kuslits, Márton, author.
Analysis and Optimisation of a New Differential Steering Concept / Márton Kuslits.
Berlin, Germany : Logos Verlag Berlin GmbH, 2022.
1 online resource (147 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
The emergence of electric drives opens up new opportunities in vehicle design. For example, powerful in-wheel motors pro -vide unprecedented flexibility in chassis design and are suitable for distributed drive solutions, although implying non-trivial vehicle dynamics control problems. This work aims at a new differential steering concept relying only on passive steering linkages where the necessary steering moment about the kingpins is generated by traction force differences produced by in-wheel motors. For the analysis of the proposed steering concept, a tailored multi-body system model is introduced along with the associated steering control system. In addition, this work explores the general applicability of such a new steering concept by using multi-objective optimisation. For this purpose, various design objectives and constraints are defined with respect to the dynamic, steady-state and low-speed steering performance of the vehicle. The resulting behaviour of the proposed steering concept is investigated by various simulation experiments demonstrating a comparable steering performance to that of conventional passenger cars.
List of Symbols and Acronyms IX -- 1 Introduction 1 -- 1.1 State of the Art in Differential Steering 3 -- 1.2 Motivation and Outline of the Thesis 6 -- 2 Vehicle Model with Differential Steering 9 -- 2.1 Model Definition and Kinematics 10 -- 2.2 Nonlinear Equations of Motion 15 -- 2.3 Tyre Models 18 -- 2.3.1 Modelling Considerations and Tyre Model Selection 18 -- 2.3.2 The Magic Formula Tyre Model 19 -- 2.3.3 Bore Torque Modelling 24 -- 2.3.4 Load Distribution and Load Transfer 27 -- 3 Symbolic Linearisation of Equations of Motion 29 -- 3.1 Symbolic Taylor Expansion 30 -- 3.2 State Reduction 34 -- 3.3 Representation in the Frequency Domain 35 -- 3.4 Application to the Vehicle Model 36 -- 3.4.1 Symbolic Manipulations on the Vehicle Model 36 -- 3.4.2 Validation of the Linearised Model 42 -- 4 Control of the Differential Steering System 45 -- 4.1 Full State Feedback Lateral Control for High-Speed Operation 45 -- 4.1.1 Closed-Loop System 46 -- 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47 -- 4.1.3 Feedforward Gain Calculation 48 -- 4.1.4 Reference Model 49 -- 4.1.5 Gain Scheduling Extension 50 -- 4.2 Angle Tracking Controller for Low-Speed Operation 50 -- 4.2.1 PI Control Rule 51 -- 4.2.2 Control Design with Root Locus Method 51 -- 5 Simulations and Steering Characterisation 55 -- 5.1 Simulation Framework 55 -- 5.2 Simulation Studies 56 -- 5.2.1 Step Steer Simulation 56 -- 5.2.2 Steady-State Cornering 59 -- 5.2.3 Double Lane Change 61 -- 5.2.4 Low-Speed Manoeuvring 62 -- 5.3 Steering Performance Characterisation 63 -- 5.3.1 Dynamic Performance in the Time Domain 64 -- 5.3.2 Tracking Performance in the Frequency Domain 65 -- 5.3.3 Steady-State Cornering Performance 68 -- 5.3.4 Low-Speed Manoeuvring Performance 69 -- 6 Multi-Objective Steering Performance Optimisation 71 -- 6.1 Design Parametrisation 72 -- 6.2 Sensitivity Studies 73 -- 6.2.1 Preselection of Control Parameter τd 73 -- 6.2.2 Identification of the Most Influential Parameters 74 -- 6.3 Optimisation Strategy 79 -- 6.3.1 Formulation of the Optimisation Problem 79 -- 6.3.2 Optimisation Assistance by Response Surfaces 80 -- 6.3.3 Optimisation Procedure 82 -- 6.4 Discussion of Optimisation Results 86 -- 7 Disturbance Rejection of the Differential Steering System 91 -- 7.1 Wheel-Curb Collision Model 92 -- 7.2 Simulation Framework for Collision Investigations 96 -- 7.3 Collision Simulations 98 -- 8 Conclusions and Outlook 101 -- Appendix: Detailed Results of Model Derivation 103 -- A.1 Kinematics 103 -- A.2 Equations of Motion 108 -- A.3 Constraints 115 -- List of Figures 117 -- List of Tables 121 -- References 123.
Electric vehicles.
Steering-gear.
language English
format eBook
author Kuslits, Márton,
spellingShingle Kuslits, Márton,
Analysis and Optimisation of a New Differential Steering Concept /
List of Symbols and Acronyms IX -- 1 Introduction 1 -- 1.1 State of the Art in Differential Steering 3 -- 1.2 Motivation and Outline of the Thesis 6 -- 2 Vehicle Model with Differential Steering 9 -- 2.1 Model Definition and Kinematics 10 -- 2.2 Nonlinear Equations of Motion 15 -- 2.3 Tyre Models 18 -- 2.3.1 Modelling Considerations and Tyre Model Selection 18 -- 2.3.2 The Magic Formula Tyre Model 19 -- 2.3.3 Bore Torque Modelling 24 -- 2.3.4 Load Distribution and Load Transfer 27 -- 3 Symbolic Linearisation of Equations of Motion 29 -- 3.1 Symbolic Taylor Expansion 30 -- 3.2 State Reduction 34 -- 3.3 Representation in the Frequency Domain 35 -- 3.4 Application to the Vehicle Model 36 -- 3.4.1 Symbolic Manipulations on the Vehicle Model 36 -- 3.4.2 Validation of the Linearised Model 42 -- 4 Control of the Differential Steering System 45 -- 4.1 Full State Feedback Lateral Control for High-Speed Operation 45 -- 4.1.1 Closed-Loop System 46 -- 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47 -- 4.1.3 Feedforward Gain Calculation 48 -- 4.1.4 Reference Model 49 -- 4.1.5 Gain Scheduling Extension 50 -- 4.2 Angle Tracking Controller for Low-Speed Operation 50 -- 4.2.1 PI Control Rule 51 -- 4.2.2 Control Design with Root Locus Method 51 -- 5 Simulations and Steering Characterisation 55 -- 5.1 Simulation Framework 55 -- 5.2 Simulation Studies 56 -- 5.2.1 Step Steer Simulation 56 -- 5.2.2 Steady-State Cornering 59 -- 5.2.3 Double Lane Change 61 -- 5.2.4 Low-Speed Manoeuvring 62 -- 5.3 Steering Performance Characterisation 63 -- 5.3.1 Dynamic Performance in the Time Domain 64 -- 5.3.2 Tracking Performance in the Frequency Domain 65 -- 5.3.3 Steady-State Cornering Performance 68 -- 5.3.4 Low-Speed Manoeuvring Performance 69 -- 6 Multi-Objective Steering Performance Optimisation 71 -- 6.1 Design Parametrisation 72 -- 6.2 Sensitivity Studies 73 -- 6.2.1 Preselection of Control Parameter τd 73 -- 6.2.2 Identification of the Most Influential Parameters 74 -- 6.3 Optimisation Strategy 79 -- 6.3.1 Formulation of the Optimisation Problem 79 -- 6.3.2 Optimisation Assistance by Response Surfaces 80 -- 6.3.3 Optimisation Procedure 82 -- 6.4 Discussion of Optimisation Results 86 -- 7 Disturbance Rejection of the Differential Steering System 91 -- 7.1 Wheel-Curb Collision Model 92 -- 7.2 Simulation Framework for Collision Investigations 96 -- 7.3 Collision Simulations 98 -- 8 Conclusions and Outlook 101 -- Appendix: Detailed Results of Model Derivation 103 -- A.1 Kinematics 103 -- A.2 Equations of Motion 108 -- A.3 Constraints 115 -- List of Figures 117 -- List of Tables 121 -- References 123.
author_facet Kuslits, Márton,
author_variant m k mk
author_role VerfasserIn
author_sort Kuslits, Márton,
title Analysis and Optimisation of a New Differential Steering Concept /
title_full Analysis and Optimisation of a New Differential Steering Concept / Márton Kuslits.
title_fullStr Analysis and Optimisation of a New Differential Steering Concept / Márton Kuslits.
title_full_unstemmed Analysis and Optimisation of a New Differential Steering Concept / Márton Kuslits.
title_auth Analysis and Optimisation of a New Differential Steering Concept /
title_new Analysis and Optimisation of a New Differential Steering Concept /
title_sort analysis and optimisation of a new differential steering concept /
publisher Logos Verlag Berlin GmbH,
publishDate 2022
physical 1 online resource (147 pages) : illustrations
contents List of Symbols and Acronyms IX -- 1 Introduction 1 -- 1.1 State of the Art in Differential Steering 3 -- 1.2 Motivation and Outline of the Thesis 6 -- 2 Vehicle Model with Differential Steering 9 -- 2.1 Model Definition and Kinematics 10 -- 2.2 Nonlinear Equations of Motion 15 -- 2.3 Tyre Models 18 -- 2.3.1 Modelling Considerations and Tyre Model Selection 18 -- 2.3.2 The Magic Formula Tyre Model 19 -- 2.3.3 Bore Torque Modelling 24 -- 2.3.4 Load Distribution and Load Transfer 27 -- 3 Symbolic Linearisation of Equations of Motion 29 -- 3.1 Symbolic Taylor Expansion 30 -- 3.2 State Reduction 34 -- 3.3 Representation in the Frequency Domain 35 -- 3.4 Application to the Vehicle Model 36 -- 3.4.1 Symbolic Manipulations on the Vehicle Model 36 -- 3.4.2 Validation of the Linearised Model 42 -- 4 Control of the Differential Steering System 45 -- 4.1 Full State Feedback Lateral Control for High-Speed Operation 45 -- 4.1.1 Closed-Loop System 46 -- 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47 -- 4.1.3 Feedforward Gain Calculation 48 -- 4.1.4 Reference Model 49 -- 4.1.5 Gain Scheduling Extension 50 -- 4.2 Angle Tracking Controller for Low-Speed Operation 50 -- 4.2.1 PI Control Rule 51 -- 4.2.2 Control Design with Root Locus Method 51 -- 5 Simulations and Steering Characterisation 55 -- 5.1 Simulation Framework 55 -- 5.2 Simulation Studies 56 -- 5.2.1 Step Steer Simulation 56 -- 5.2.2 Steady-State Cornering 59 -- 5.2.3 Double Lane Change 61 -- 5.2.4 Low-Speed Manoeuvring 62 -- 5.3 Steering Performance Characterisation 63 -- 5.3.1 Dynamic Performance in the Time Domain 64 -- 5.3.2 Tracking Performance in the Frequency Domain 65 -- 5.3.3 Steady-State Cornering Performance 68 -- 5.3.4 Low-Speed Manoeuvring Performance 69 -- 6 Multi-Objective Steering Performance Optimisation 71 -- 6.1 Design Parametrisation 72 -- 6.2 Sensitivity Studies 73 -- 6.2.1 Preselection of Control Parameter τd 73 -- 6.2.2 Identification of the Most Influential Parameters 74 -- 6.3 Optimisation Strategy 79 -- 6.3.1 Formulation of the Optimisation Problem 79 -- 6.3.2 Optimisation Assistance by Response Surfaces 80 -- 6.3.3 Optimisation Procedure 82 -- 6.4 Discussion of Optimisation Results 86 -- 7 Disturbance Rejection of the Differential Steering System 91 -- 7.1 Wheel-Curb Collision Model 92 -- 7.2 Simulation Framework for Collision Investigations 96 -- 7.3 Collision Simulations 98 -- 8 Conclusions and Outlook 101 -- Appendix: Detailed Results of Model Derivation 103 -- A.1 Kinematics 103 -- A.2 Equations of Motion 108 -- A.3 Constraints 115 -- List of Figures 117 -- List of Tables 121 -- References 123.
isbn 3-8325-5578-1
callnumber-first V - Naval Science
callnumber-subject VM - Naval Architecture, Shipbuilding, Marine Engineering
callnumber-label VM841
callnumber-sort VM 3841 K875 42022
illustrated Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 623 - Military & nautical engineering
dewey-full 623.862
dewey-sort 3623.862
dewey-raw 623.862
dewey-search 623.862
work_keys_str_mv AT kuslitsmarton analysisandoptimisationofanewdifferentialsteeringconcept
status_str n
ids_txt_mv (CKB)5580000000512028
(NjHacI)995580000000512028
(EXLCZ)995580000000512028
carrierType_str_mv cr
is_hierarchy_title Analysis and Optimisation of a New Differential Steering Concept /
_version_ 1796652748516622337
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04744nam a2200301 i 4500</leader><controlfield tag="001">993581038604498</controlfield><controlfield tag="005">20230324113634.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230324s2022 gw a o 000 0 eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-8325-5578-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5580000000512028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)995580000000512028</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995580000000512028</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">VM841</subfield><subfield code="b">.K875 2022</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">623.862</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kuslits, Márton,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis and Optimisation of a New Differential Steering Concept /</subfield><subfield code="c">Márton Kuslits.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Germany :</subfield><subfield code="b">Logos Verlag Berlin GmbH,</subfield><subfield code="c">2022.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (147 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The emergence of electric drives opens up new opportunities in vehicle design. For example, powerful in-wheel motors pro -vide unprecedented flexibility in chassis design and are suitable for distributed drive solutions, although implying non-trivial vehicle dynamics control problems. This work aims at a new differential steering concept relying only on passive steering linkages where the necessary steering moment about the kingpins is generated by traction force differences produced by in-wheel motors. For the analysis of the proposed steering concept, a tailored multi-body system model is introduced along with the associated steering control system. In addition, this work explores the general applicability of such a new steering concept by using multi-objective optimisation. For this purpose, various design objectives and constraints are defined with respect to the dynamic, steady-state and low-speed steering performance of the vehicle. The resulting behaviour of the proposed steering concept is investigated by various simulation experiments demonstrating a comparable steering performance to that of conventional passenger cars.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">List of Symbols and Acronyms IX -- 1 Introduction 1 -- 1.1 State of the Art in Differential Steering 3 -- 1.2 Motivation and Outline of the Thesis 6 -- 2 Vehicle Model with Differential Steering 9 -- 2.1 Model Definition and Kinematics 10 -- 2.2 Nonlinear Equations of Motion 15 -- 2.3 Tyre Models 18 -- 2.3.1 Modelling Considerations and Tyre Model Selection 18 -- 2.3.2 The Magic Formula Tyre Model 19 -- 2.3.3 Bore Torque Modelling 24 -- 2.3.4 Load Distribution and Load Transfer 27 -- 3 Symbolic Linearisation of Equations of Motion 29 -- 3.1 Symbolic Taylor Expansion 30 -- 3.2 State Reduction 34 -- 3.3 Representation in the Frequency Domain 35 -- 3.4 Application to the Vehicle Model 36 -- 3.4.1 Symbolic Manipulations on the Vehicle Model 36 -- 3.4.2 Validation of the Linearised Model 42 -- 4 Control of the Differential Steering System 45 -- 4.1 Full State Feedback Lateral Control for High-Speed Operation 45 -- 4.1.1 Closed-Loop System 46 -- 4.1.2 Feedback Gain Calculation Using the LQ-Principle 47 -- 4.1.3 Feedforward Gain Calculation 48 -- 4.1.4 Reference Model 49 -- 4.1.5 Gain Scheduling Extension 50 -- 4.2 Angle Tracking Controller for Low-Speed Operation 50 -- 4.2.1 PI Control Rule 51 -- 4.2.2 Control Design with Root Locus Method 51 -- 5 Simulations and Steering Characterisation 55 -- 5.1 Simulation Framework 55 -- 5.2 Simulation Studies 56 -- 5.2.1 Step Steer Simulation 56 -- 5.2.2 Steady-State Cornering 59 -- 5.2.3 Double Lane Change 61 -- 5.2.4 Low-Speed Manoeuvring 62 -- 5.3 Steering Performance Characterisation 63 -- 5.3.1 Dynamic Performance in the Time Domain 64 -- 5.3.2 Tracking Performance in the Frequency Domain 65 -- 5.3.3 Steady-State Cornering Performance 68 -- 5.3.4 Low-Speed Manoeuvring Performance 69 -- 6 Multi-Objective Steering Performance Optimisation 71 -- 6.1 Design Parametrisation 72 -- 6.2 Sensitivity Studies 73 -- 6.2.1 Preselection of Control Parameter τd 73 -- 6.2.2 Identification of the Most Influential Parameters 74 -- 6.3 Optimisation Strategy 79 -- 6.3.1 Formulation of the Optimisation Problem 79 -- 6.3.2 Optimisation Assistance by Response Surfaces 80 -- 6.3.3 Optimisation Procedure 82 -- 6.4 Discussion of Optimisation Results 86 -- 7 Disturbance Rejection of the Differential Steering System 91 -- 7.1 Wheel-Curb Collision Model 92 -- 7.2 Simulation Framework for Collision Investigations 96 -- 7.3 Collision Simulations 98 -- 8 Conclusions and Outlook 101 -- Appendix: Detailed Results of Model Derivation 103 -- A.1 Kinematics 103 -- A.2 Equations of Motion 108 -- A.3 Constraints 115 -- List of Figures 117 -- List of Tables 121 -- References 123.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Electric vehicles.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Steering-gear.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-04-15 13:27:15 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2023-02-12 18:10:44 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5343010870004498&amp;Force_direct=true</subfield><subfield code="Z">5343010870004498</subfield><subfield code="b">Available</subfield><subfield code="8">5343010870004498</subfield></datafield></record></collection>