New Science Based Concepts for Increased Efficiency in Battery Recycling 2020

Based on 19 high-quality articles, this Special Issue presents methods for further improving the currently achievable recycling rate, product quality in terms of focused elements, and approaches for the enhanced mobilization of lithium, graphite, and electrolyte components. In particular, the target...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2022
Language:English
Physical Description:1 electronic resource (412 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05731nam-a2201381z--4500
001 993576079304498
005 20231214133602.0
006 m o d
007 cr|mn|---annan
008 202301s2022 xx |||||o ||| 0|eng d
020 |a 3-0365-5926-4 
035 |a (CKB)5470000001633471 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/95821 
035 |a (EXLCZ)995470000001633471 
041 0 |a eng 
100 1 |a Friedrich, Bernd  |4 edt 
245 1 0 |a New Science Based Concepts for Increased Efficiency in Battery Recycling 2020 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (412 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Based on 19 high-quality articles, this Special Issue presents methods for further improving the currently achievable recycling rate, product quality in terms of focused elements, and approaches for the enhanced mobilization of lithium, graphite, and electrolyte components. In particular, the target of early-stage Li removal is a central point of various research approaches in the world, which has been reported, for example, under the names early-stage lithium recovery (ESLR process) with or without gaseous CO2 and supercritical CO2 leaching (COOL process). Furthermore, many more approaches are present in this Special Issue, ranging from robotic disassembly and the dismantling of Li‐ion batteries, or the optimization of various pyro‐ and hydrometallurgical as well as combined battery recycling processes for the treatment of conventional Li‐ion batteries, all the way to an evaluation of the recycling on an industrial level. In addition to the consideration of Li distribution in compounds of a Li2O-MgO-Al2O3-SiO2-CaO system, Li recovery from battery slags is also discussed. The development of suitable recycling strategies of six new battery systems, such as all-solid-state batteries, but also lithium–sulfur batteries, is also taken into account here. Some of the articles also discuss the fact that battery recycling processes do not have to produce end products such as high-purity battery materials, but that the aim should be to find an “entry point” into existing, proven large-scale industrial processes. Participants in this Special Issue originate from 18 research institutions from eight countries. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
650 7 |a Mining technology & engineering  |2 bicssc 
653 |a lead-acid battery recycling 
653 |a pyrite cinder treatment 
653 |a lead bullion 
653 |a sulfide matte 
653 |a SO2 emissions 
653 |a pilot plant 
653 |a environmental technologies 
653 |a waste treatment 
653 |a recycling 
653 |a spent lithium-ion batteries 
653 |a recycling chain 
653 |a process stages 
653 |a unit processes 
653 |a industrial recycling technologies 
653 |a mechanical treatment 
653 |a slag cleaning 
653 |a cobalt 
653 |a nickel 
653 |a manganese 
653 |a lithium-ion battery 
653 |a circular economy 
653 |a batteries 
653 |a reuse 
653 |a disassembly 
653 |a safety 
653 |a lithium minerals 
653 |a lithium slag characterization 
653 |a thermochemical modeling 
653 |a critical raw materials 
653 |a smelting 
653 |a lithium 
653 |a graphite 
653 |a mechanical processing 
653 |a pyrometallurgy 
653 |a thermal treatment 
653 |a pyrolysis 
653 |a hydrometallurgy 
653 |a precipitation 
653 |a oxalic acid 
653 |a mixed oxalate 
653 |a battery recycling 
653 |a lithium-sulfur batteries 
653 |a metallurgical recycling 
653 |a metal recovery 
653 |a recycling efficiency 
653 |a lithium-ion batteries 
653 |a all-solid-state batteries 
653 |a slag 
653 |a leaching 
653 |a dry digestion 
653 |a fractionation 
653 |a tubular centrifuge 
653 |a rotational speed control 
653 |a particle size analysis 
653 |a lithium iron phosphate 
653 |a LFP 
653 |a carbon black 
653 |a direct battery recycling 
653 |a recovery 
653 |a thermodynamic modeling 
653 |a engineered artificial minerals (EnAM) 
653 |a melt experiments 
653 |a PXRD 
653 |a EPMA 
653 |a manganese recovery 
653 |a solvent extraction 
653 |a D2EHPA 
653 |a factorial design of experiments 
653 |a lithium-ion batteries (LIBs) 
653 |a lithium removal 
653 |a phosphorous removal 
653 |a recovery of valuable metals 
653 |a carbonation 
653 |a lithium phase transformation 
653 |a autoclave 
653 |a supercritical CO2 
653 |a X-ray absorption near edge structure (XANES) 
653 |a powder X-ray diffraction (PXRD) 
653 |a electron probe microanalysis (EPMA) 
653 |a lithium recycling 
653 |a lithium batteries 
653 |a black mass 
653 |a LIB 
653 |a mechanical recycling processes 
653 |a battery generation 
653 |a solid state batteries 
653 |a robotic disassembly 
653 |a electric vehicle battery 
653 |a task planner 
776 |z 3-0365-5925-6 
700 1 |a Friedrich, Bernd  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:58:31 Europe/Vienna  |f system  |c marc21  |a 2023-01-18 06:03:23 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5342572940004498&Force_direct=true  |Z 5342572940004498  |b Available  |8 5342572940004498