Soft and stiffness-controllable robotics solutions for minimally invasive surgery : : the STIFF-FLOP approach / / Jelizaveta Konstantinova, Ali Shiva and Kaspar Althoefer, editors.

Soft and Stiffness-controllable Robotics Solutions for Minimally Invasive Surgery presents the results of a research project, funded by European Commission, STIFF-FLOP: STIFFness controllable Flexible and Learn-able manipulator for surgical Operations. In Minimally Invasive Surgery (MIS), tools go t...

Full description

Saved in:
Bibliographic Details
Superior document:River Publishers series in automation, control and robotics
TeilnehmendeR:
Place / Publishing House:Denmark : : River Publishers,, [2018]
©2018
Year of Publication:2018
Edition:1st ed.
Language:English
Series:River Publishers series in automation, control and robotics.
Physical Description:1 online resource (420 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Front Cover
  • Half Title Page
  • RIVER PUBLISHERS SERIES IN AUTOMATION, CONTROL AND ROBOTICS
  • Tilte Page
  • Copyright Page
  • Contents
  • Preface
  • Acknowledgements
  • List of Contributors
  • List of Figures
  • List of Tables
  • List of Abbreviations
  • PART I Development of Silicone-based Stiffness Controllable Actuators
  • Chapter 1 Technology Selection
  • 1.1 Manipulator Specifications
  • 1.1.1 Medical Requirements
  • 1.1.2 Technical Specifications
  • 1.2 Technological Overview of Different Actuation Strategies
  • 1.2.1 Active Motion Technology Survey
  • 1.2.1.1 Electromagnetic motors
  • 1.2.1.2 Electro active polymers. 1.2.1.3 Shape memory alloys1.2.1.4 Shape memory polymers
  • 1.2.1.5 Flexible fluidic actuator
  • 1.2.2 Discussion and Choice of Active Motion Technology
  • 1.2.3 Stiffness Variation Technology Survey
  • 1.2.4 Comparison and Choice
  • References
  • Chapter 2 Design of the Multi-module Manipulator
  • 2.1 The Design of the Single Module
  • 2.1.1 Active Motion
  • 2.1.2 Stiffness variation
  • 2.2 Connection of Multiple Modules
  • 2.3 Complete Characterization of the 2-Module Manipulator
  • 2.3.1 Fabrication
  • 2.3.2 Workspace Evaluation
  • 2.3.2.1 Methods
  • 2.3.2.2 Results
  • 2.3.3 Junction Characterization
  • 2.3.3.1 Methods. 2.3.3.2 Results2.3.4 Stiffness Characterization
  • 2.3.4.1 Methods
  • 2.3.4.2 Results
  • 2.3.5 Combined Force and Stiffening Experiments
  • 2.3.5.1 Methods
  • 2.3.5.2 Results
  • References
  • Chapter 3 Soft Manipulator Actuation Module with Reinforced Chambers
  • 3.1 Introduction
  • 3.1.1 Change of the Chamber Cross Section Area
  • 3.1.2 Chamber Cross Section Center Displacement
  • 3.1.3 Friction between the Silicone Body and Braided Sleeve
  • 3.1.4 Sensor Interaction
  • 3.2 Proposed Improvements
  • 3.2.1 Possible Solutions
  • 3.2.2 Design
  • 3.3 Manufacturing
  • 3.4 Tests
  • 3.4.1 Pneumatic Actuation. 3.4.2 Hydraulic Actuation3.4.3 External Force
  • 3.5 Stiffening Mechanism
  • 3.5.1 Basic Module Design
  • 3.5.2 Optimised Module Design
  • 3.6 Conclusions
  • Acknowledgement
  • References
  • Chapter 4 Antagonistic Actuation Principle for a Silicone-based Soft Manipulator
  • 4.1 Introduction
  • 4.2 Background
  • 4.3 Bio-Inspiration and Contributions
  • 4.4 Integration of the Antagonistic Stiffening Mechanism
  • 4.4.1 Embedding Tendon-driven Actuation into a STIFF-FLOP Segment
  • 4.4.2 Setup of the Antagonistic Actuation Architecture
  • 4.5 Test Protocol, Experimental Results, and Discussion
  • 4.5.1 Methodology. 4.5.2 Experimental Results4.5.3 Discussion
  • 4.6 Conclusions
  • 4.7 Funding
  • References
  • Chapter 5 Smart Hydrogel for Stiffness Controllable Continuum Manipulators: A Conceptual Design
  • 5.1 Introduction
  • 5.2 Materials and Methods
  • 5.2.1 Active Hydrogel Preparation
  • 5.2.2 Active Hydrogel Properties and Ion Pattern Printing
  • 5.3 Experiments and Discussion
  • 5.3.1 Swelling Test
  • 5.3.2 Stiffness Test
  • 5.4 Conclusion and Future Works
  • References
  • PART II Creation and Integration of Multiple Sensing Modalities
  • Chapter 6 Optical Force and Torque Sensor for Flexible Robotic Manipulators.