Building the hyperconnected society : : IoT research and innovation value chains, ecosystems and markets / / editors, Dr. Ovidiu Vermesan, Dr. Peter Friess.

This book aims to provide a broad overview of various topics of Internet of Things (IoT), ranging from research, innovation and development priorities to enabling technologies, nanoelectronics, cyber-physical systems, architecture, interoperability and industrial applications. All this is happening...

Full description

Saved in:
Bibliographic Details
Superior document:River Publishers Series in Communications ; Volume 43
TeilnehmendeR:
Place / Publishing House:Aalborg, Denmark ;, Delft, Netherlands : : River Publishers,, 2016.
©2016
Year of Publication:2015
2016
Edition:1st ed.
Language:English
Series:River Publishers series in communications ; v. 43.
Physical Description:1 online resource (331 pages).
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Cover
  • Half title - Building the Hyperconnected SocietyIoT Research and Innovation Value Chains, Ecosystems and Markets
  • Series Title
  • Title page - Building the Hyperconnected SocietyIoT Research and Innovation Value Chains, Ecosystems and Markets
  • Copyright page
  • Dedication
  • Contents
  • Preface
  • Editors Biography
  • Chapter 1- Introduction
  • 1.1 Now Is the Time
  • 1.2 The Digital Single Market and Internet of Things Transformative Technologies
  • 1.3 Benefits and Challenges
  • 1.4 Conclusion
  • Chapter 2 - New Horizons for the Internet of Thingsin Europe
  • 2.1 Introduction
  • 2.2 The IoT Is the New Age
  • 2.3 The IoT Can Unleash a New Industrialand Innovation Era
  • 2.4 Issues to Be Tackled
  • 2.5 Building IoT Innovation Ecosystems
  • 2.6 IoT Large Scale Pilots for Testing and Deployment
  • 2.7 Alliance for Internet of Things Innovation
  • 2.8 Conclusions
  • Chapter 3 - Internet of Things beyond the Hype: Research, Innovation and Deployment
  • 3.1 Internet of Things Vision
  • 3.1.1 Internet of Things Common Definition
  • 3.2 IoT Strategic Research and Innovation Directions
  • 3.2.1 IoT Applications and Deployment Scenarios
  • 3.3 IoT Smart-X Applications
  • 3.3.1 Wearables
  • 3.3.2 Smart Health,Wellness and AgeingWell
  • 3.3.3 Smart Homes and Buildings
  • 3.3.4 Smart Energy
  • 3.3.5 Smart Mobility and Transport
  • 3.3.6 Smart Manufacturing and Industrial Internet of Things
  • 3.3.7 Smart Cities
  • 3.3.7.1 Large Scale Pilots and Ecosystem for Smart Cities
  • 3.3.7.2 Role of Institutions and Citizens in the Global IoT
  • 3.3.8 Smart Farming and Food Security
  • 3.4 Future Internet Support for IoT
  • 3.4.1 Macro-Challenges for Supporting IoT Evolution
  • 3.4.1.1 Billions of Devices
  • 3.4.1.2 IoT Management for Robustness and Reliability
  • 3.4.1.3 Intelligent Reasoning over IoT Data.
  • 3.4.2 Roadmap and Technology for Addressing TheseChallenges
  • 3.4.2.1 From Challenges to Technology Solutions
  • 3.5 Internet of Things and Related Future Internet Technologies
  • 3.5.1 Cloud and Edge/Fog Computing
  • 3.5.2 Federated IoT Data Cloud and Orchestrationof Large Scale Services
  • 3.5.2.1 IoT Data Analytics
  • 3.5.3 IoT Interoperability and Semantic Technologies
  • 3.6 Networks and Communication
  • 3.6.1 Networking Technology
  • 3.6.2 Communication Technology
  • 3.7 Data Management
  • 3.7.1 Smart Data
  • 3.8 A QoS Security Framework for the IoT Architecture
  • 3.8.1 End-to-End Security. The Decentralized Approach.
  • 3.8.2 Standardization. Certification. Interoperability.
  • 3.8.3 Components of a QoS Security Framework
  • 3.8.3.1 Authentication
  • 3.8.3.2 Authorization
  • 3.8.3.3 Network
  • 3.8.3.4 Trust Management
  • 3.9 Discussion
  • Acknowledgments
  • Bibliography
  • Chapter 4 - Internet of Things Application Scenarios, Pilots and Innovation
  • 4.1 Introduction
  • 4.2 IoT Projects
  • 4.2.1 ALMANAC
  • 4.2.1.1 Application Areas
  • 4.2.1.2 Pilots and Demonstrators
  • 4.2.1.2.1 SmartWaste Collection Field Trial
  • 4.2.1.2.2 SmartWater Capillary Network
  • 4.2.1.2.3 Collaborative Citizen-centric application
  • 4.2.2 ClouT
  • 4.2.2.1 Application Areas
  • 4.2.2.2 Pilots and Demonstrators
  • 4.2.2.2.1 Fujisawa field trial: Surfboard + Smile Coupon
  • 4.2.2.2.2 Mitaka field trial: Paw collection
  • 4.2.2.2.3 Genova field trial: "I don't risk" (SEM1 application context)
  • 4.2.2.2.4 Santander field trial:Traffic Mobility Management
  • 4.2.2.2.5 Sensorized garbage collection cars
  • 4.2.2.2.6 Pace of the city
  • 4.2.3 OSMOSE
  • 4.2.3.1 Application Areas
  • 4.2.3.2 Pilots and Demonstrators
  • 4.2.3.2.1 OSMOsis applications for Aerospace Domain
  • 4.2.3.2.2 OSMOsis applications for Automotive Domain
  • 4.2.4 RERUM
  • 4.2.4.1 Application Areas.
  • 4.2.4.2 Pilots and Demonstrators
  • 4.2.4.2.1 RERUM Mote (ReMote2)
  • 4.2.4.2.2 Smart Transportation
  • 4.2.4.2.3 Smart Environmental monitoring
  • 4.2.4.2.4 Home energy management
  • 4.2.4.2.5 Comfort quality monitoring
  • 4.2.5 SMARTIE
  • 4.2.5.1 Application Areas
  • 4.2.5.2 Pilots and Demonstrators
  • 4.2.5.2.1 Augmented Reality Based Smart Transport Service
  • 4.2.6 SocIoTal
  • 4.2.6.1 Application Areas
  • 4.2.6.2 Pilots and Demonstrators
  • 4.2.6.2.1 Santander and Novisad trials
  • 4.2.7 VITAL
  • 4.2.7.1 Application Areas
  • 4.2.7.2 Pilots and Demonstrators
  • 4.2.7.2.1 IoT-supported Urban Regeneration
  • 4.2.7.2.2 IoT-enabled Smart Traffic Management
  • 4.2.8 BUTLER (Completed)
  • 4.2.8.1 Application Areas
  • 4.2.8.2 Pilots and Demonstrators
  • 4.2.8.2.1 SmartOffice Trial
  • 4.2.8.2.2 SmartShopping Trial
  • 4.2.8.2.3 SmartParking Trial
  • 4.2.8.2.4 SmartHealth Trial
  • 4.2.8.2.5 SmartTransport Trial
  • 4.2.9 iCore
  • 4.2.9.1 Application Areas
  • 4.2.9.2 Pilots and Demonstrators
  • 4.2.9.2.1 Pilot at Trento Hospital
  • 4.2.9.2.2 Smart Tour in the City
  • 4.2.9.2.3 Smart Urban security
  • 4.2.9.2.4 Smart Home
  • 4.2.9.2.5 Task-based Smart IoT
  • 4.2.9.2.6 Smart City:Transportation
  • 4.2.9.2.7 Smart Office
  • 4.2.9.2.8 Smart cold chain logistics
  • 4.2.10 IoT.est (Completed)
  • 4.2.10.1 Application Areas
  • 4.2.10.2 Pilots and Demonstrators
  • 4.2.10.2.1 IoT Services Testing
  • 4.2.11 OpenIoT
  • 4.2.11.1 Application Areas
  • 4.2.11.2 Pilots and Demonstrators
  • 4.2.11.2.1 IoT-Smart City - Crowdsensing Quality of Air Monitoring Trial
  • 4.2.11.2.2 IoT-Intelligent Manufacturing - Smart Industry Trial
  • 4.2.11.2.3 IoT Enabled (Smart) Campus Guide
  • 4.2.11.2.4 Silver Angel - IoT Enabled Living and Communication in Smart Cities
  • 4.2.11.2.5 IoT-Large Scale Deployments - Phenonet Trial.
  • 4.2.11.2.6 OpenIot middleware platform and Virtual Development Kit
  • 4.3 IoT Projects' Pilots and Demonstrators
  • 4.4 Summary
  • 4.5 List of Contributors
  • Bibliography
  • Chapter 5 - Industrial Internet of Thingsand the Innovation Processesin Smart Manufacturing
  • 5.1 IIoT for Manufacturing: Key Enabler for 4th Industrial Revolution
  • 5.2 IoT in the Factories of the Future PPP and Digital Manufacturing:The EFFRA Perspective
  • 5.2.1 IoT &amp
  • Cyber-Physical Production Systems
  • 5.2.2 CPPS Architectures Design Drivers for Scalable, Adaptive and Smart Manufacturing Systems
  • 5.3 Product Design and Engineering in the IoT Era:The LINKEDDESIGN Project
  • 5.3.1 IoT-Enabled Closed Loop Framework
  • 5.3.2 Discussion
  • 5.4 Workplaces of the Future and IoT:The FITMAN Project
  • 5.4.1 FITMAN Smart Factory Platform (IoT)
  • 5.4.2 Safe &amp
  • HealthyWorkforce:TRW Use Case
  • 5.5 Osmosis Membranes for IoT Real-Digital-Virtual Worlds Interconnection:The OSMOSE Project
  • 5.5.1 The IoT Data Gaps
  • 5.5.2 The Liquid Enterprise
  • 5.5.3 Osmotic Context Management
  • 5.6 IoT Enhanced Learning for Complex SystemsMaintenance:The TELLME Project
  • 5.6.1 The Need for IoT Enhanced Learning in Aerospace
  • 5.6.2 IoT Enhanced Learning for Avoidance of Foreign ObjectDebris (FOD)
  • 5.6.3 IoT Enhanced Learning for Non-StandardWorkplaceEnvironmental Condition
  • 5.6.4 FutureWork
  • 5.7 IoT-Driven Manufacturing Innovation Ecosystems
  • 5.8 Industrial Internet of Things:The US IGNITEPerspective
  • 5.8.1 Background on US IGNITE and the GENI/FIRE Initiatives
  • 5.8.2 Cyber Physical Tools and Frameworks
  • 5.9 Research, Innovation Challenges for IoT Adoption in Manufacturing:The SMART 2013/37 EC Study
  • 5.9.1 The Study IoT and Cloud Research and Innovation Strategy
  • 5.9.2 The Main Market Trends
  • 5.9.3 The IoT and Cloud Research and InnovationChallenges.
  • 5.9.4 Study Conclusions and EC Policy Recommendations
  • Bibliography
  • Chapter 6 - Securing the Internet of Things - Security and Privacy in a HyperconnectedWorld
  • 6.1 Introduction
  • 6.2 End-to-End Security and Privacy by Design
  • 6.3 Physical IoT Security
  • 6.3.1 Selected Low-Cost Attacks
  • 6.3.2 Key Extraction Attacks and Countermeasures
  • 6.4 On Device Security and Privacy
  • 6.4.1 Mediated Device Access for Security and Privacy
  • 6.4.2 Encryption
  • 6.4.3 Integrity
  • 6.4.4 Data Minimisation
  • 6.5 Unobservable Communication
  • 6.5.1 Resisting Network Traffic Analysis
  • 6.6 Access Control Based on Policy Management
  • 6.7 Security and Privacy in the IoT Cloud
  • 6.7.1 Verifiable and Authenticity Preserving Data Processing
  • 6.7.2 Structural Integrity and Certification of Virtualized Infrastructure
  • 6.7.3 Privacy Preserving Service Usage and Data Handling
  • 6.7.4 Confidentiality of (Un-)structured Data
  • 6.7.5 Long Term Security and Everlasting Privacy
  • 6.7.6 Conclusion
  • 6.8 Outlook
  • Acknowledgment
  • Bibliography
  • Chapter 7 - IoT Analytics: Collect, Process, Analyze, and Present Massive Amounts of Operational Data - Research and Innovation Challenges
  • 7.1 Introduction
  • 7.2 Deep Internet of Things Data Analytics
  • 7.2.1 Introduction
  • 7.2.2 Designing for Real World Problems
  • 7.2.3 Real World Data
  • 7.2.4 Data Interoperability
  • 7.2.5 Deep Data Analytics Methods
  • 7.2.6 Conclusions
  • 7.3 Cloud-Based IoT Big Data Platform
  • 7.3.1 Introduction
  • 7.3.2 Big Data in the Context of IoT
  • 7.3.3 Applications of IoT Big Data Analytics
  • 7.3.4 Requirements of IoT Big Data Analytic Platform
  • 7.3.4.1 Intelligent and dynamic
  • 7.3.4.2 Distributed
  • 7.3.4.3 Scalable and elastic
  • 7.3.4.4 Real-time
  • 7.3.4.5 Heterogeneous (unified)
  • 7.3.4.6 Security and privacy
  • 7.3.5 Cloud-Based IoT Analytic Platform.
  • 7.4 IoT Analytics in Health and Social Care.