Finite-Time Thermodynamics

The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obv...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2022
Language:English
Physical Description:1 electronic resource (368 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05096nam-a2201417z--4500
001 993562967404498
005 20231214132917.0
006 m o d
007 cr|mn|---annan
008 202210s2022 xx |||||o ||| 0|eng d
020 |a 3-0365-4950-1 
035 |a (CKB)5670000000391591 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/93182 
035 |a (EXLCZ)995670000000391591 
041 0 |a eng 
100 1 |a Berry, R. Stephen  |4 edt 
245 1 0 |a Finite-Time Thermodynamics 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (368 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The theory around the concept of finite time describes how processes of any nature can be optimized in situations when their rate is required to be non-negligible, i.e., they must come to completion in a finite time. What the theory makes explicit is “the cost of haste”. Intuitively, it is quite obvious that you drive your car differently if you want to reach your destination as quickly as possible as opposed to the case when you are running out of gas. Finite-time thermodynamics quantifies such opposing requirements and may provide the optimal control to achieve the best compromise. The theory was initially developed for heat engines (steam, Otto, Stirling, a.o.) and for refrigerators, but it has by now evolved into essentially all areas of dynamic systems from the most abstract ones to the most practical ones. The present collection shows some fascinating current examples. 
546 |a English 
650 7 |a Economics, finance, business & management  |2 bicssc 
653 |a macroentropy 
653 |a microentropy 
653 |a endoreversible engine 
653 |a reversible computing 
653 |a Landauer's principle 
653 |a piston motion optimization 
653 |a endoreversible thermodynamics 
653 |a stirling engine 
653 |a irreversibility 
653 |a power 
653 |a efficiency 
653 |a optimization 
653 |a generalized radiative heat transfer law 
653 |a optimal motion path 
653 |a maximum work output 
653 |a elimination method 
653 |a finite time thermodynamics 
653 |a thermodynamics 
653 |a economics 
653 |a optimal processes 
653 |a averaged 
653 |a heat transfer 
653 |a cyclic mode 
653 |a simulation 
653 |a modeling 
653 |a reconstruction 
653 |a nonequilibrium thermodynamics 
653 |a entropy production 
653 |a contact temperature 
653 |a quantum thermodynamics 
653 |a maximum power 
653 |a shortcut to adiabaticity 
653 |a quantum friction 
653 |a Otto cycle 
653 |a quantum engine 
653 |a quantum refrigerator 
653 |a finite-time thermodynamics 
653 |a sulfuric acid decomposition 
653 |a tubular plug-flow reactor 
653 |a entropy generation rate 
653 |a SO2 yield 
653 |a multi-objective optimization 
653 |a optimal control 
653 |a thermodynamic cycles 
653 |a thermodynamic length 
653 |a hydrogen atom 
653 |a nano-size engines 
653 |a a-thermal cycle 
653 |a heat engines 
653 |a cooling 
653 |a very long timescales 
653 |a slow time 
653 |a ideal gas law 
653 |a new and modified variables 
653 |a Silicon-Germanium alloys 
653 |a minimum of thermal conductivity 
653 |a efficiency of thermoelectric systems 
653 |a minimal energy dissipation 
653 |a radiative energy transfer 
653 |a radiative entropy transfer 
653 |a two-stream grey atmosphere 
653 |a energy flux density 
653 |a entropy flux density 
653 |a generalized winds 
653 |a conservatively perturbed equilibrium 
653 |a extreme value 
653 |a momentary equilibrium 
653 |a information geometry of thermodynamics 
653 |a thermodynamic curvature 
653 |a critical phenomena 
653 |a binary fluids 
653 |a van der Waals equation 
653 |a quantum heat engine 
653 |a carnot cycle 
653 |a otto cycle 
653 |a multiobjective optimization 
653 |a Pareto front 
653 |a stability 
653 |a maximum power regime 
653 |a entropy behavior 
653 |a biophysics 
653 |a biochemistry 
653 |a dynamical systems 
653 |a diversity 
653 |a complexity 
653 |a path information 
653 |a calorimetry 
653 |a entropy flow 
653 |a biological communities 
653 |a reacting systems 
776 |z 3-0365-4949-8 
700 1 |a Salamon, Peter  |4 edt 
700 1 |a Andresen, Bjarne  |4 edt 
700 1 |a Berry, R. Stephen  |4 oth 
700 1 |a Salamon, Peter  |4 oth 
700 1 |a Andresen, Bjarne  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:35:33 Europe/Vienna  |f system  |c marc21  |a 2022-11-05 21:33:14 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5340569830004498&Force_direct=true  |Z 5340569830004498  |b Available  |8 5340569830004498