Spark-plasma sintering and related field-assisted powder consolidation technologies / / edited by Eugene A. Olevsky.

Electromagnetic field-assisted sintering techniques have increasingly attracted attention of scientists and technologists. Spark-plasma sintering (SPS) and other field-assisted powder consolidation approaches provide remarkable capabilities to the processing of materials into configurations previous...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Basel, Switzerland : : MDPI - Multidisciplinary Digital Publishing Institute,, [2017]
©2017
Year of Publication:2017
Language:English
Physical Description:1 online resource (vii, 181 pages) :; illustrations
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993562076704498
ctrlnum (CKB)3710000001127844
(NjHacI)993710000001127844
(EXLCZ)993710000001127844
collection bib_alma
record_format marc
spelling Spark-plasma sintering and related field-assisted powder consolidation technologies / edited by Eugene A. Olevsky.
Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute, [2017]
©2017
1 online resource (vii, 181 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Electromagnetic field-assisted sintering techniques have increasingly attracted attention of scientists and technologists. Spark-plasma sintering (SPS) and other field-assisted powder consolidation approaches provide remarkable capabilities to the processing of materials into configurations previously unattainable. Of particular significance is the possibility of using very fast heating rates, which, coupled with the field-assisted mass transport, stand behind the purported ability to achieve high densities during consolidation and to maintain the nanostructure of consolidated materials via these techniques. Potentially, SPS and related technologies have many significant advantages over the conventional powder processing methods, including the lower process temperature, the shorter holding time, dramatically improved properties of sintered products, low manufacturing costs, and environmental friendliness.
Includes bibliographical references.
About the Guest Editor. V -- Preface to "Spark-Plasma Sintering and Related Field-Assisted Powder Consolidation Technologies" VII -- Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect? -- Reprinted from: Materials 2016, 9(5), 375; doi:10.3390/ma9050375 -- http://www.mdpi.com/1996-1944/9/5/375. 1 -- The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 495; doi:10.3390/ma9060495 -- http://www.mdpi.com/1996-1944/9/6/495 11 -- Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders -- Reprinted from: Materials 2016, 9(6), 482; doi:10.3390/ma9060482 -- http://www.mdpi.com/1996-1944/9/6/482 20 -- Bonding of TRIP-Steel/Al-O-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus -- Reprinted from: Materials 2016, 9(7), 558; doi:10.3390/ma9070558 -- http://www.mdpi.com/1996-1944/9/7/558. 34 -- Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by -- Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(8), 638; doi:10.3390/ma9080638 -- http://www.mdpi.com/1996-1944/9/8/638. 45 -- Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties -- Reprinted from: Materials 2016, 9(7), 577; doi: 10.3390/ma9070577 -- http://www.mdpi.com/1996-1944/9/7/577. 56 -- Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 489; doi:10.3390/ma9060489 -- http://www.mdpi.com/1996-1944/9/6/489. 72 -- The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non- Stoichiometric Magnesium Aluminate Spinel -- Reprinted from: Materials 2016, 9(6), 481, doi: 10.3390/ma9060481 -- http://www.mdpi.com/1996-1944/9/6/481 88 -- Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus -- Reprinted from: Materials 2016, 9(6), 493, doi: 10.3390/ma9060493 -- http://www.mdpi.com/1996-1944/9/6/493. 100 -- The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO/3Y-TZP Composites -- Reprinted from: Materials 2016, 9(5), 320; doi:10.3390/ma9050320 -- http://www.mdpi.com/1996-1944/9/5/320. 109 -- Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering -- Reprinted from: Materials 2016, 9(4), 280; doi:10.3390/ma9040280 -- http://www.mdpi.com/1996-1944/9/4/280. 118 -- On the Mechanism of Microwave Flash Sintering of Ceramics -- Reprinted from: Materials 2016, 9(8), 684; doi:10.3390/ma9080684 -- http://www.mdpi.com/1996-1944/9/8/684. 126 -- Discussion on Local Spark Sintering of a Ceramic-Metal System in an SR-CT Experiment during Microwave Processing -- Reprinted from: Materials 2016, 9(3), 132; doi:10.3390/ma9030132 -- http://www.mdpi.com/1996-1944/9/3/132 144 -- Microstructure Investigation of 13Cr-Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique -- Reprinted from: Materials 2015, 8(11), 7342-7353; doi:10.3390/ma8115381 -- http://www.mdpi.com/1996-1944/8/11/5381. 153 -- Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips -- Reprinted from: Materials 2016, 9(7), 564; doi: 10.3390/ma9070564 -- http://www.mdpi.com/1996-1944/9/7/564. 165.
Powder metallurgy.
3-03842-383-1
Olevsky, Eugene A., editor.
language English
format eBook
author2 Olevsky, Eugene A.,
author_facet Olevsky, Eugene A.,
author2_variant e a o ea eao
author2_role TeilnehmendeR
title Spark-plasma sintering and related field-assisted powder consolidation technologies /
spellingShingle Spark-plasma sintering and related field-assisted powder consolidation technologies /
About the Guest Editor. V -- Preface to "Spark-Plasma Sintering and Related Field-Assisted Powder Consolidation Technologies" VII -- Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect? -- Reprinted from: Materials 2016, 9(5), 375; doi:10.3390/ma9050375 -- http://www.mdpi.com/1996-1944/9/5/375. 1 -- The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 495; doi:10.3390/ma9060495 -- http://www.mdpi.com/1996-1944/9/6/495 11 -- Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders -- Reprinted from: Materials 2016, 9(6), 482; doi:10.3390/ma9060482 -- http://www.mdpi.com/1996-1944/9/6/482 20 -- Bonding of TRIP-Steel/Al-O-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus -- Reprinted from: Materials 2016, 9(7), 558; doi:10.3390/ma9070558 -- http://www.mdpi.com/1996-1944/9/7/558. 34 -- Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by -- Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(8), 638; doi:10.3390/ma9080638 -- http://www.mdpi.com/1996-1944/9/8/638. 45 -- Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties -- Reprinted from: Materials 2016, 9(7), 577; doi: 10.3390/ma9070577 -- http://www.mdpi.com/1996-1944/9/7/577. 56 -- Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 489; doi:10.3390/ma9060489 -- http://www.mdpi.com/1996-1944/9/6/489. 72 -- The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non- Stoichiometric Magnesium Aluminate Spinel -- Reprinted from: Materials 2016, 9(6), 481, doi: 10.3390/ma9060481 -- http://www.mdpi.com/1996-1944/9/6/481 88 -- Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus -- Reprinted from: Materials 2016, 9(6), 493, doi: 10.3390/ma9060493 -- http://www.mdpi.com/1996-1944/9/6/493. 100 -- The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO/3Y-TZP Composites -- Reprinted from: Materials 2016, 9(5), 320; doi:10.3390/ma9050320 -- http://www.mdpi.com/1996-1944/9/5/320. 109 -- Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering -- Reprinted from: Materials 2016, 9(4), 280; doi:10.3390/ma9040280 -- http://www.mdpi.com/1996-1944/9/4/280. 118 -- On the Mechanism of Microwave Flash Sintering of Ceramics -- Reprinted from: Materials 2016, 9(8), 684; doi:10.3390/ma9080684 -- http://www.mdpi.com/1996-1944/9/8/684. 126 -- Discussion on Local Spark Sintering of a Ceramic-Metal System in an SR-CT Experiment during Microwave Processing -- Reprinted from: Materials 2016, 9(3), 132; doi:10.3390/ma9030132 -- http://www.mdpi.com/1996-1944/9/3/132 144 -- Microstructure Investigation of 13Cr-Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique -- Reprinted from: Materials 2015, 8(11), 7342-7353; doi:10.3390/ma8115381 -- http://www.mdpi.com/1996-1944/8/11/5381. 153 -- Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips -- Reprinted from: Materials 2016, 9(7), 564; doi: 10.3390/ma9070564 -- http://www.mdpi.com/1996-1944/9/7/564. 165.
title_full Spark-plasma sintering and related field-assisted powder consolidation technologies / edited by Eugene A. Olevsky.
title_fullStr Spark-plasma sintering and related field-assisted powder consolidation technologies / edited by Eugene A. Olevsky.
title_full_unstemmed Spark-plasma sintering and related field-assisted powder consolidation technologies / edited by Eugene A. Olevsky.
title_auth Spark-plasma sintering and related field-assisted powder consolidation technologies /
title_new Spark-plasma sintering and related field-assisted powder consolidation technologies /
title_sort spark-plasma sintering and related field-assisted powder consolidation technologies /
publisher MDPI - Multidisciplinary Digital Publishing Institute,
publishDate 2017
physical 1 online resource (vii, 181 pages) : illustrations
contents About the Guest Editor. V -- Preface to "Spark-Plasma Sintering and Related Field-Assisted Powder Consolidation Technologies" VII -- Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect? -- Reprinted from: Materials 2016, 9(5), 375; doi:10.3390/ma9050375 -- http://www.mdpi.com/1996-1944/9/5/375. 1 -- The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 495; doi:10.3390/ma9060495 -- http://www.mdpi.com/1996-1944/9/6/495 11 -- Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders -- Reprinted from: Materials 2016, 9(6), 482; doi:10.3390/ma9060482 -- http://www.mdpi.com/1996-1944/9/6/482 20 -- Bonding of TRIP-Steel/Al-O-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus -- Reprinted from: Materials 2016, 9(7), 558; doi:10.3390/ma9070558 -- http://www.mdpi.com/1996-1944/9/7/558. 34 -- Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by -- Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(8), 638; doi:10.3390/ma9080638 -- http://www.mdpi.com/1996-1944/9/8/638. 45 -- Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties -- Reprinted from: Materials 2016, 9(7), 577; doi: 10.3390/ma9070577 -- http://www.mdpi.com/1996-1944/9/7/577. 56 -- Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 489; doi:10.3390/ma9060489 -- http://www.mdpi.com/1996-1944/9/6/489. 72 -- The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non- Stoichiometric Magnesium Aluminate Spinel -- Reprinted from: Materials 2016, 9(6), 481, doi: 10.3390/ma9060481 -- http://www.mdpi.com/1996-1944/9/6/481 88 -- Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus -- Reprinted from: Materials 2016, 9(6), 493, doi: 10.3390/ma9060493 -- http://www.mdpi.com/1996-1944/9/6/493. 100 -- The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO/3Y-TZP Composites -- Reprinted from: Materials 2016, 9(5), 320; doi:10.3390/ma9050320 -- http://www.mdpi.com/1996-1944/9/5/320. 109 -- Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering -- Reprinted from: Materials 2016, 9(4), 280; doi:10.3390/ma9040280 -- http://www.mdpi.com/1996-1944/9/4/280. 118 -- On the Mechanism of Microwave Flash Sintering of Ceramics -- Reprinted from: Materials 2016, 9(8), 684; doi:10.3390/ma9080684 -- http://www.mdpi.com/1996-1944/9/8/684. 126 -- Discussion on Local Spark Sintering of a Ceramic-Metal System in an SR-CT Experiment during Microwave Processing -- Reprinted from: Materials 2016, 9(3), 132; doi:10.3390/ma9030132 -- http://www.mdpi.com/1996-1944/9/3/132 144 -- Microstructure Investigation of 13Cr-Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique -- Reprinted from: Materials 2015, 8(11), 7342-7353; doi:10.3390/ma8115381 -- http://www.mdpi.com/1996-1944/8/11/5381. 153 -- Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips -- Reprinted from: Materials 2016, 9(7), 564; doi: 10.3390/ma9070564 -- http://www.mdpi.com/1996-1944/9/7/564. 165.
isbn 3-03842-383-1
callnumber-first T - Technology
callnumber-subject TN - Mining Engineering and Metallurgy
callnumber-label TN695
callnumber-sort TN 3695 S637 42017
illustrated Illustrated
dewey-hundreds 600 - Technology
dewey-tens 670 - Manufacturing
dewey-ones 671 - Metalworking & primary metal products
dewey-full 671.37
dewey-sort 3671.37
dewey-raw 671.37
dewey-search 671.37
work_keys_str_mv AT olevskyeugenea sparkplasmasinteringandrelatedfieldassistedpowderconsolidationtechnologies
status_str n
ids_txt_mv (CKB)3710000001127844
(NjHacI)993710000001127844
(EXLCZ)993710000001127844
carrierType_str_mv cr
is_hierarchy_title Spark-plasma sintering and related field-assisted powder consolidation technologies /
author2_original_writing_str_mv noLinkedField
_version_ 1764993804136349696
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05508nam a2200313 i 4500</leader><controlfield tag="001">993562076704498</controlfield><controlfield tag="005">20230324235350.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">230324s2017 sz a ob 000 0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000001127844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)993710000001127844</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000001127844</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">TN695</subfield><subfield code="b">.S637 2017</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">671.37</subfield><subfield code="2">23</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Spark-plasma sintering and related field-assisted powder consolidation technologies /</subfield><subfield code="c">edited by Eugene A. Olevsky.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel, Switzerland :</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute,</subfield><subfield code="c">[2017]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (vii, 181 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Electromagnetic field-assisted sintering techniques have increasingly attracted attention of scientists and technologists. Spark-plasma sintering (SPS) and other field-assisted powder consolidation approaches provide remarkable capabilities to the processing of materials into configurations previously unattainable. Of particular significance is the possibility of using very fast heating rates, which, coupled with the field-assisted mass transport, stand behind the purported ability to achieve high densities during consolidation and to maintain the nanostructure of consolidated materials via these techniques. Potentially, SPS and related technologies have many significant advantages over the conventional powder processing methods, including the lower process temperature, the shorter holding time, dramatically improved properties of sintered products, low manufacturing costs, and environmental friendliness.</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">About the Guest Editor. V -- Preface to "Spark-Plasma Sintering and Related Field-Assisted Powder Consolidation Technologies" VII -- Formation of Aluminum Particles with Shell Morphology during Pressureless Spark Plasma Sintering of Fe-Al Mixtures: Current-Related or Kirkendall Effect? -- Reprinted from: Materials 2016, 9(5), 375; doi:10.3390/ma9050375 -- http://www.mdpi.com/1996-1944/9/5/375. 1 -- The Manufacturing of High Porosity Iron with an Ultra-Fine Microstructure via Free Pressureless Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 495; doi:10.3390/ma9060495 -- http://www.mdpi.com/1996-1944/9/6/495 11 -- Spark Plasma Co-Sintering of Mechanically Milled Tool Steel and High Speed Steel Powders -- Reprinted from: Materials 2016, 9(6), 482; doi:10.3390/ma9060482 -- http://www.mdpi.com/1996-1944/9/6/482 20 -- Bonding of TRIP-Steel/Al-O-(3Y)-TZP Composites and (3Y)-TZP Ceramic by a Spark Plasma Sintering (SPS) Apparatus -- Reprinted from: Materials 2016, 9(7), 558; doi:10.3390/ma9070558 -- http://www.mdpi.com/1996-1944/9/7/558. 34 -- Microstructure and Electrical Properties of AZO/Graphene Nanosheets Fabricated by -- Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(8), 638; doi:10.3390/ma9080638 -- http://www.mdpi.com/1996-1944/9/8/638. 45 -- Zirconium Carbide Produced by Spark Plasma Sintering and Hot Pressing: Densification Kinetics, Grain Growth, and Thermal Properties -- Reprinted from: Materials 2016, 9(7), 577; doi: 10.3390/ma9070577 -- http://www.mdpi.com/1996-1944/9/7/577. 56 -- Processing, Mechanical and Optical Properties of Additive-Free ZrC Ceramics Prepared by Spark Plasma Sintering -- Reprinted from: Materials 2016, 9(6), 489; doi:10.3390/ma9060489 -- http://www.mdpi.com/1996-1944/9/6/489. 72 -- The Effect of Lithium Doping on the Sintering and Grain Growth of SPS-Processed, Non- Stoichiometric Magnesium Aluminate Spinel -- Reprinted from: Materials 2016, 9(6), 481, doi: 10.3390/ma9060481 -- http://www.mdpi.com/1996-1944/9/6/481 88 -- Creep of Polycrystalline Magnesium Aluminate Spinel Studied by an SPS Apparatus -- Reprinted from: Materials 2016, 9(6), 493, doi: 10.3390/ma9060493 -- http://www.mdpi.com/1996-1944/9/6/493. 100 -- The Effects of Spark-Plasma Sintering (SPS) on the Microstructure and Mechanical Properties of BaTiO/3Y-TZP Composites -- Reprinted from: Materials 2016, 9(5), 320; doi:10.3390/ma9050320 -- http://www.mdpi.com/1996-1944/9/5/320. 109 -- Liquid Film Capillary Mechanism for Densification of Ceramic Powders during Flash Sintering -- Reprinted from: Materials 2016, 9(4), 280; doi:10.3390/ma9040280 -- http://www.mdpi.com/1996-1944/9/4/280. 118 -- On the Mechanism of Microwave Flash Sintering of Ceramics -- Reprinted from: Materials 2016, 9(8), 684; doi:10.3390/ma9080684 -- http://www.mdpi.com/1996-1944/9/8/684. 126 -- Discussion on Local Spark Sintering of a Ceramic-Metal System in an SR-CT Experiment during Microwave Processing -- Reprinted from: Materials 2016, 9(3), 132; doi:10.3390/ma9030132 -- http://www.mdpi.com/1996-1944/9/3/132 144 -- Microstructure Investigation of 13Cr-Mo ODS Steel Components Obtained by High Voltage Electric Discharge Compaction Technique -- Reprinted from: Materials 2015, 8(11), 7342-7353; doi:10.3390/ma8115381 -- http://www.mdpi.com/1996-1944/8/11/5381. 153 -- Characterizations of Rapid Sintered Nanosilver Joint for Attaching Power Chips -- Reprinted from: Materials 2016, 9(7), 564; doi: 10.3390/ma9070564 -- http://www.mdpi.com/1996-1944/9/7/564. 165.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Powder metallurgy.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03842-383-1</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Olevsky, Eugene A.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-04-15 13:34:30 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2017-04-01 16:55:35 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337982230004498&amp;Force_direct=true</subfield><subfield code="Z">5337982230004498</subfield><subfield code="8">5337982230004498</subfield></datafield></record></collection>