Instability in geophysical flows / / William D. Smyth, Jeffrey R. Carpenter.

Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instabil...

Full description

Saved in:
Bibliographic Details
Superior document:Physical Sciences
VerfasserIn:
TeilnehmendeR:
Place / Publishing House:Cambridge : : Cambridge University Press,, 2019.
Year of Publication:2019
Edition:1st ed.
Language:English
Series:Physical Sciences
Physical Description:1 online resource (xi, 327 pages) :; digital, PDF file(s).
Notes:Title from publisher's bibliographic system (viewed on 19 Apr 2019).
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993553564604498
ctrlnum (CKB)4970000000101560
(UkCbUP)CR9781108640084
(MiAaPQ)EBC5879497
(Au-PeEL)EBL5879497
(OCoLC)1101102230
(oapen)https://directory.doabooks.org/handle/20.500.12854/90836
(EXLCZ)994970000000101560
collection bib_alma
record_format marc
spelling Smyth, William D., author.
Instability in geophysical flows / William D. Smyth, Jeffrey R. Carpenter.
1st ed.
Cambridge : Cambridge University Press, 2019.
1 online resource (xi, 327 pages) : digital, PDF file(s).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Physical Sciences
Cover -- Half-title page -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- Part I Normal Mode Instabilities -- 1 Preliminaries -- 1.1 What Is Instability? -- 1.2 Goals -- 1.3 Tools -- 1.4 Numerical Solution of a Boundary Value Problem -- 1.5 The Equations of Motion -- 1.6 Further Reading -- 1.7 Appendix: A Closer Look at Perturbation Theory -- 2 Convective Instability -- 2.1 The Perturbation Equations -- 2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid -- 2.3 Viscous and Diffusive Effects -- 2.4 Boundary Effects: the Rayleigh-Benard Problem -- 2.5 Nonlinear Effects -- 2.6 Summary -- 2.7 Appendix: Waves and Convection in a Compressible Fluid -- 3 Instabilities of a Parallel Shear Flow -- 3.1 The Perturbation Equations -- 3.2 Rayleigh's Equation -- 3.3 Analytical Example: the Piecewise-Linear Shear Layer -- 3.4 Solution Types for Rayleigh's Equation -- 3.5 Numerical Solution of Rayleigh's Equation -- 3.6 Shear Scaling -- 3.7 Oblique Modes and Squire Transformations -- 3.8 Rules of Thumb for a General Shear Instability -- 3.9 Numerical Examples -- 3.10 Perturbation Energetics -- 3.11 Necessary Conditions for Instability -- 3.12 The Wave Resonance Mechanism of Shear Instability -- 3.13 Quantitative Analysis of Wave Resonance -- 3.14 Summary -- 3.15 Appendix: Classical Proof of the Rayleigh and Fjørtoft Theorems -- 3.16 Further Reading -- 4 Parallel Shear Flow: the Effects of Stratification -- 4.1 The Richardson Number -- 4.2 Equilibria and Perturbations -- 4.3 Oblique Modes -- 4.4 The Taylor-Goldstein Equation -- 4.5 Application to Internal Wave Phenomena -- 4.6 Analytical Examples of Instability in Stratified Shear Flows -- 4.7 The Miles-Howard Theorem -- 4.8 Howard's Semicircle Theorem -- 4.9 Energetics -- 4.10 Summary -- 4.11 Further Reading -- 4.12 Appendix: Veering Flows -- 4.13 Appendix: Spatial Growth.
5 Parallel Shear Flow: the Effects of Viscosity -- 5.1 Conditions for Equilibrium -- 5.2 Conditions for Quasi-Equilibrium: the Frozen Flow Approximation -- 5.3 The Orr-Sommerfeld Equation -- 5.4 Boundary Conditions for Viscous Fluid -- 5.5 Numerical Solution of the Orr-Sommerfeld Equation -- 5.6 Oblique Modes -- 5.7 Shear Scaling and the Reynolds Number -- 5.8 Numerical Examples -- 5.9 Perturbation Energetics in Viscous Flow -- 5.10 Summary -- 6 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow -- 6.1 Expanding the Basic Equations -- 6.2 Numerical Solution -- 6.3 2D and Oblique Modes: Squire Transformations -- 6.4 Shear and Diffusion Scalings -- 6.5 Application: Instabilities of a Stably Stratified Shear Layer -- 6.6 Application: Analysis of Observational Data -- 6.7 Summary -- 6.8 Further Reading -- 7 Nonparallel Flow: Instabilities of a Cylindrical Vortex -- 7.1 Cyclostrophic Equilibrium -- 7.2 The Perturbation Equations -- 7.3 Barotropic Modes (m = 0) -- 7.4 Axisymmetric Modes (l = 0) -- 7.5 Analytical Example: the Rankine Vortex -- 7.6 Numerical Example: a Continuous Vortex -- 7.7 Wave Interactions in Barotropic Vortices -- 7.8 Mechanisms of Centrifugal and Convective Instabilities -- 7.9 Swirling Flows -- 7.10 Summary -- 7.11 Further Reading -- 8 Instability in a Rotating Environment -- 8.1 Frontal Zones -- 8.2 Geostrophic Equilibrium and the Thermal Wind Balance -- 8.3 The Perturbation Equations -- 8.4 Energetics -- 8.5 The Vertical Vorticity Equation -- 8.6 Analytical Solution #1: Inertial and Symmetric Instabilities -- 8.7 Analytical Solution #2: Baroclinic Instability -- 8.8 Numerical Solution Method -- 8.9 Instability in the Ageostrophic Regime -- 8.10 Summary -- 8.11 Further Reading -- 9 Convective Instability in Complex Fluids -- 9.1 Conditional Instability in a Moist Atmosphere or a Freezing Ocean.
9.2 Double Diffusive Instabilities -- 9.3 Bioconvection -- 9.4 CO[sub(2)] Sequestration -- 10 Summary -- 10.1 Equilibrium States -- 10.2 Instabilities -- Part II The View Ahead -- 11 Beyond Normal Modes -- 11.1 Instability as an Initial Value Problem -- 11.2 Transient Growth in Simple Linear Systems -- 11.3 Computing the Optimal Initial Condition -- 11.4 Optimizing Growth at t = 0[sup(+)] -- 11.5 Growth at Short and Long Times: a Simple Example -- 11.6 Example: The Piecewise Shear Layer -- 11.7 Mechanics of Transient Growth in a Shear Layer -- 11.8 Generalizing the Inner Product -- 11.9 Summary -- 11.10 Appendix: Singular Value Decomposition -- 11.11 Further Reading -- 12 Instability and Turbulence -- 12.1 Secondary Instabilities and the Transition to Turbulence -- 12.2 Turbulence-Driven Instabilities -- 12.3 Cyclic Instability -- 12.4 Further Reading -- 13 Refining the Numerical Methods -- 13.1 Higher-Order Finite Differences -- 13.2 Finite Differences on an Adaptive Grid -- 13.3 Galerkin Methods -- 13.4 The Shooting Method -- 13.5 Generalizations -- 13.6 Further Reading -- Appendix A Homework Exercises -- Appendix B Projects -- References -- Index.
English
Open Access title.
Title from publisher's bibliographic system (viewed on 19 Apr 2019).
Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instability. Classical analytical approaches are covered, while also emphasising numerical methods, mechanisms such as internal wave resonance, and simple `rules of thumb' that permit assessment of instability quickly and intuitively. Part II introduces the cutting edge: nonmodal instabilities, the relationship between instability and turbulence, self-organised criticality, and advanced numerical techniques. Featuring numerous exercises and projects, the book is ideal for advanced students and researchers wishing to understand flow instability and apply it to their own research. It can be used to teach courses in oceanography, atmospheric science, coastal engineering, applied mathematics and environmental science. Exercise solutions and MATLAB® examples are provided online. Also available as Open Access on Cambridge Core.
Geophysics.
Geodynamics.
Marine geophysics.
1-108-70301-1
Carpenter, Jeffrey R., 1979- author.
language English
format eBook
author Smyth, William D.,
Carpenter, Jeffrey R., 1979-
spellingShingle Smyth, William D.,
Carpenter, Jeffrey R., 1979-
Instability in geophysical flows /
Physical Sciences
Cover -- Half-title page -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- Part I Normal Mode Instabilities -- 1 Preliminaries -- 1.1 What Is Instability? -- 1.2 Goals -- 1.3 Tools -- 1.4 Numerical Solution of a Boundary Value Problem -- 1.5 The Equations of Motion -- 1.6 Further Reading -- 1.7 Appendix: A Closer Look at Perturbation Theory -- 2 Convective Instability -- 2.1 The Perturbation Equations -- 2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid -- 2.3 Viscous and Diffusive Effects -- 2.4 Boundary Effects: the Rayleigh-Benard Problem -- 2.5 Nonlinear Effects -- 2.6 Summary -- 2.7 Appendix: Waves and Convection in a Compressible Fluid -- 3 Instabilities of a Parallel Shear Flow -- 3.1 The Perturbation Equations -- 3.2 Rayleigh's Equation -- 3.3 Analytical Example: the Piecewise-Linear Shear Layer -- 3.4 Solution Types for Rayleigh's Equation -- 3.5 Numerical Solution of Rayleigh's Equation -- 3.6 Shear Scaling -- 3.7 Oblique Modes and Squire Transformations -- 3.8 Rules of Thumb for a General Shear Instability -- 3.9 Numerical Examples -- 3.10 Perturbation Energetics -- 3.11 Necessary Conditions for Instability -- 3.12 The Wave Resonance Mechanism of Shear Instability -- 3.13 Quantitative Analysis of Wave Resonance -- 3.14 Summary -- 3.15 Appendix: Classical Proof of the Rayleigh and Fjørtoft Theorems -- 3.16 Further Reading -- 4 Parallel Shear Flow: the Effects of Stratification -- 4.1 The Richardson Number -- 4.2 Equilibria and Perturbations -- 4.3 Oblique Modes -- 4.4 The Taylor-Goldstein Equation -- 4.5 Application to Internal Wave Phenomena -- 4.6 Analytical Examples of Instability in Stratified Shear Flows -- 4.7 The Miles-Howard Theorem -- 4.8 Howard's Semicircle Theorem -- 4.9 Energetics -- 4.10 Summary -- 4.11 Further Reading -- 4.12 Appendix: Veering Flows -- 4.13 Appendix: Spatial Growth.
5 Parallel Shear Flow: the Effects of Viscosity -- 5.1 Conditions for Equilibrium -- 5.2 Conditions for Quasi-Equilibrium: the Frozen Flow Approximation -- 5.3 The Orr-Sommerfeld Equation -- 5.4 Boundary Conditions for Viscous Fluid -- 5.5 Numerical Solution of the Orr-Sommerfeld Equation -- 5.6 Oblique Modes -- 5.7 Shear Scaling and the Reynolds Number -- 5.8 Numerical Examples -- 5.9 Perturbation Energetics in Viscous Flow -- 5.10 Summary -- 6 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow -- 6.1 Expanding the Basic Equations -- 6.2 Numerical Solution -- 6.3 2D and Oblique Modes: Squire Transformations -- 6.4 Shear and Diffusion Scalings -- 6.5 Application: Instabilities of a Stably Stratified Shear Layer -- 6.6 Application: Analysis of Observational Data -- 6.7 Summary -- 6.8 Further Reading -- 7 Nonparallel Flow: Instabilities of a Cylindrical Vortex -- 7.1 Cyclostrophic Equilibrium -- 7.2 The Perturbation Equations -- 7.3 Barotropic Modes (m = 0) -- 7.4 Axisymmetric Modes (l = 0) -- 7.5 Analytical Example: the Rankine Vortex -- 7.6 Numerical Example: a Continuous Vortex -- 7.7 Wave Interactions in Barotropic Vortices -- 7.8 Mechanisms of Centrifugal and Convective Instabilities -- 7.9 Swirling Flows -- 7.10 Summary -- 7.11 Further Reading -- 8 Instability in a Rotating Environment -- 8.1 Frontal Zones -- 8.2 Geostrophic Equilibrium and the Thermal Wind Balance -- 8.3 The Perturbation Equations -- 8.4 Energetics -- 8.5 The Vertical Vorticity Equation -- 8.6 Analytical Solution #1: Inertial and Symmetric Instabilities -- 8.7 Analytical Solution #2: Baroclinic Instability -- 8.8 Numerical Solution Method -- 8.9 Instability in the Ageostrophic Regime -- 8.10 Summary -- 8.11 Further Reading -- 9 Convective Instability in Complex Fluids -- 9.1 Conditional Instability in a Moist Atmosphere or a Freezing Ocean.
9.2 Double Diffusive Instabilities -- 9.3 Bioconvection -- 9.4 CO[sub(2)] Sequestration -- 10 Summary -- 10.1 Equilibrium States -- 10.2 Instabilities -- Part II The View Ahead -- 11 Beyond Normal Modes -- 11.1 Instability as an Initial Value Problem -- 11.2 Transient Growth in Simple Linear Systems -- 11.3 Computing the Optimal Initial Condition -- 11.4 Optimizing Growth at t = 0[sup(+)] -- 11.5 Growth at Short and Long Times: a Simple Example -- 11.6 Example: The Piecewise Shear Layer -- 11.7 Mechanics of Transient Growth in a Shear Layer -- 11.8 Generalizing the Inner Product -- 11.9 Summary -- 11.10 Appendix: Singular Value Decomposition -- 11.11 Further Reading -- 12 Instability and Turbulence -- 12.1 Secondary Instabilities and the Transition to Turbulence -- 12.2 Turbulence-Driven Instabilities -- 12.3 Cyclic Instability -- 12.4 Further Reading -- 13 Refining the Numerical Methods -- 13.1 Higher-Order Finite Differences -- 13.2 Finite Differences on an Adaptive Grid -- 13.3 Galerkin Methods -- 13.4 The Shooting Method -- 13.5 Generalizations -- 13.6 Further Reading -- Appendix A Homework Exercises -- Appendix B Projects -- References -- Index.
author_facet Smyth, William D.,
Carpenter, Jeffrey R., 1979-
Carpenter, Jeffrey R., 1979-
author_variant w d s wd wds
j r c jr jrc
author_role VerfasserIn
VerfasserIn
author2 Carpenter, Jeffrey R., 1979-
author2_role TeilnehmendeR
author_sort Smyth, William D.,
title Instability in geophysical flows /
title_full Instability in geophysical flows / William D. Smyth, Jeffrey R. Carpenter.
title_fullStr Instability in geophysical flows / William D. Smyth, Jeffrey R. Carpenter.
title_full_unstemmed Instability in geophysical flows / William D. Smyth, Jeffrey R. Carpenter.
title_auth Instability in geophysical flows /
title_new Instability in geophysical flows /
title_sort instability in geophysical flows /
series Physical Sciences
series2 Physical Sciences
publisher Cambridge University Press,
publishDate 2019
physical 1 online resource (xi, 327 pages) : digital, PDF file(s).
edition 1st ed.
contents Cover -- Half-title page -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- Part I Normal Mode Instabilities -- 1 Preliminaries -- 1.1 What Is Instability? -- 1.2 Goals -- 1.3 Tools -- 1.4 Numerical Solution of a Boundary Value Problem -- 1.5 The Equations of Motion -- 1.6 Further Reading -- 1.7 Appendix: A Closer Look at Perturbation Theory -- 2 Convective Instability -- 2.1 The Perturbation Equations -- 2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid -- 2.3 Viscous and Diffusive Effects -- 2.4 Boundary Effects: the Rayleigh-Benard Problem -- 2.5 Nonlinear Effects -- 2.6 Summary -- 2.7 Appendix: Waves and Convection in a Compressible Fluid -- 3 Instabilities of a Parallel Shear Flow -- 3.1 The Perturbation Equations -- 3.2 Rayleigh's Equation -- 3.3 Analytical Example: the Piecewise-Linear Shear Layer -- 3.4 Solution Types for Rayleigh's Equation -- 3.5 Numerical Solution of Rayleigh's Equation -- 3.6 Shear Scaling -- 3.7 Oblique Modes and Squire Transformations -- 3.8 Rules of Thumb for a General Shear Instability -- 3.9 Numerical Examples -- 3.10 Perturbation Energetics -- 3.11 Necessary Conditions for Instability -- 3.12 The Wave Resonance Mechanism of Shear Instability -- 3.13 Quantitative Analysis of Wave Resonance -- 3.14 Summary -- 3.15 Appendix: Classical Proof of the Rayleigh and Fjørtoft Theorems -- 3.16 Further Reading -- 4 Parallel Shear Flow: the Effects of Stratification -- 4.1 The Richardson Number -- 4.2 Equilibria and Perturbations -- 4.3 Oblique Modes -- 4.4 The Taylor-Goldstein Equation -- 4.5 Application to Internal Wave Phenomena -- 4.6 Analytical Examples of Instability in Stratified Shear Flows -- 4.7 The Miles-Howard Theorem -- 4.8 Howard's Semicircle Theorem -- 4.9 Energetics -- 4.10 Summary -- 4.11 Further Reading -- 4.12 Appendix: Veering Flows -- 4.13 Appendix: Spatial Growth.
5 Parallel Shear Flow: the Effects of Viscosity -- 5.1 Conditions for Equilibrium -- 5.2 Conditions for Quasi-Equilibrium: the Frozen Flow Approximation -- 5.3 The Orr-Sommerfeld Equation -- 5.4 Boundary Conditions for Viscous Fluid -- 5.5 Numerical Solution of the Orr-Sommerfeld Equation -- 5.6 Oblique Modes -- 5.7 Shear Scaling and the Reynolds Number -- 5.8 Numerical Examples -- 5.9 Perturbation Energetics in Viscous Flow -- 5.10 Summary -- 6 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow -- 6.1 Expanding the Basic Equations -- 6.2 Numerical Solution -- 6.3 2D and Oblique Modes: Squire Transformations -- 6.4 Shear and Diffusion Scalings -- 6.5 Application: Instabilities of a Stably Stratified Shear Layer -- 6.6 Application: Analysis of Observational Data -- 6.7 Summary -- 6.8 Further Reading -- 7 Nonparallel Flow: Instabilities of a Cylindrical Vortex -- 7.1 Cyclostrophic Equilibrium -- 7.2 The Perturbation Equations -- 7.3 Barotropic Modes (m = 0) -- 7.4 Axisymmetric Modes (l = 0) -- 7.5 Analytical Example: the Rankine Vortex -- 7.6 Numerical Example: a Continuous Vortex -- 7.7 Wave Interactions in Barotropic Vortices -- 7.8 Mechanisms of Centrifugal and Convective Instabilities -- 7.9 Swirling Flows -- 7.10 Summary -- 7.11 Further Reading -- 8 Instability in a Rotating Environment -- 8.1 Frontal Zones -- 8.2 Geostrophic Equilibrium and the Thermal Wind Balance -- 8.3 The Perturbation Equations -- 8.4 Energetics -- 8.5 The Vertical Vorticity Equation -- 8.6 Analytical Solution #1: Inertial and Symmetric Instabilities -- 8.7 Analytical Solution #2: Baroclinic Instability -- 8.8 Numerical Solution Method -- 8.9 Instability in the Ageostrophic Regime -- 8.10 Summary -- 8.11 Further Reading -- 9 Convective Instability in Complex Fluids -- 9.1 Conditional Instability in a Moist Atmosphere or a Freezing Ocean.
9.2 Double Diffusive Instabilities -- 9.3 Bioconvection -- 9.4 CO[sub(2)] Sequestration -- 10 Summary -- 10.1 Equilibrium States -- 10.2 Instabilities -- Part II The View Ahead -- 11 Beyond Normal Modes -- 11.1 Instability as an Initial Value Problem -- 11.2 Transient Growth in Simple Linear Systems -- 11.3 Computing the Optimal Initial Condition -- 11.4 Optimizing Growth at t = 0[sup(+)] -- 11.5 Growth at Short and Long Times: a Simple Example -- 11.6 Example: The Piecewise Shear Layer -- 11.7 Mechanics of Transient Growth in a Shear Layer -- 11.8 Generalizing the Inner Product -- 11.9 Summary -- 11.10 Appendix: Singular Value Decomposition -- 11.11 Further Reading -- 12 Instability and Turbulence -- 12.1 Secondary Instabilities and the Transition to Turbulence -- 12.2 Turbulence-Driven Instabilities -- 12.3 Cyclic Instability -- 12.4 Further Reading -- 13 Refining the Numerical Methods -- 13.1 Higher-Order Finite Differences -- 13.2 Finite Differences on an Adaptive Grid -- 13.3 Galerkin Methods -- 13.4 The Shooting Method -- 13.5 Generalizations -- 13.6 Further Reading -- Appendix A Homework Exercises -- Appendix B Projects -- References -- Index.
isbn 1-108-67051-2
1-108-64008-7
1-108-70301-1
callnumber-first Q - Science
callnumber-subject QE - Geology
callnumber-label QE501
callnumber-sort QE 3501 S6375 42019
illustrated Not Illustrated
dewey-hundreds 500 - Science
dewey-tens 550 - Earth sciences & geology
dewey-ones 551 - Geology, hydrology & meteorology
dewey-full 551.46/8
dewey-sort 3551.46 18
dewey-raw 551.46/8
dewey-search 551.46/8
oclc_num 1101102230
work_keys_str_mv AT smythwilliamd instabilityingeophysicalflows
AT carpenterjeffreyr instabilityingeophysicalflows
status_str n
ids_txt_mv (CKB)4970000000101560
(UkCbUP)CR9781108640084
(MiAaPQ)EBC5879497
(Au-PeEL)EBL5879497
(OCoLC)1101102230
(oapen)https://directory.doabooks.org/handle/20.500.12854/90836
(EXLCZ)994970000000101560
carrierType_str_mv cr
hierarchy_parent_title Physical Sciences
is_hierarchy_title Instability in geophysical flows /
container_title Physical Sciences
author2_original_writing_str_mv noLinkedField
_version_ 1805870602545790976
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02261nam a2200337 i 4500</leader><controlfield tag="001">993553564604498</controlfield><controlfield tag="005">20190502115337.0</controlfield><controlfield tag="006">m|||||o||d||||||||</controlfield><controlfield tag="007">cr||||||||||||</controlfield><controlfield tag="008">171103s2019||||enk o ||1 0|eng|d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-108-67051-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-108-64008-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4970000000101560</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(UkCbUP)CR9781108640084</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC5879497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL5879497</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1101102230</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/90836</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994970000000101560</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">UkCbUP</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">UkCbUP</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">QE501</subfield><subfield code="b">.S6375 2019</subfield></datafield><datafield tag="082" ind1="0" ind2="0"><subfield code="a">551.46/8</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Smyth, William D.,</subfield><subfield code="e">author.</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Instability in geophysical flows /</subfield><subfield code="c">William D. Smyth, Jeffrey R. Carpenter.</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed.</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge :</subfield><subfield code="b">Cambridge University Press,</subfield><subfield code="c">2019.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xi, 327 pages) :</subfield><subfield code="b">digital, PDF file(s).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Physical Sciences</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half-title page -- Title page -- Copyright page -- Contents -- Preface -- Acknowledgments -- Part I Normal Mode Instabilities -- 1 Preliminaries -- 1.1 What Is Instability? -- 1.2 Goals -- 1.3 Tools -- 1.4 Numerical Solution of a Boundary Value Problem -- 1.5 The Equations of Motion -- 1.6 Further Reading -- 1.7 Appendix: A Closer Look at Perturbation Theory -- 2 Convective Instability -- 2.1 The Perturbation Equations -- 2.2 Simple Case: Inviscid, Nondiffusive, Unbounded Fluid -- 2.3 Viscous and Diffusive Effects -- 2.4 Boundary Effects: the Rayleigh-Benard Problem -- 2.5 Nonlinear Effects -- 2.6 Summary -- 2.7 Appendix: Waves and Convection in a Compressible Fluid -- 3 Instabilities of a Parallel Shear Flow -- 3.1 The Perturbation Equations -- 3.2 Rayleigh's Equation -- 3.3 Analytical Example: the Piecewise-Linear Shear Layer -- 3.4 Solution Types for Rayleigh's Equation -- 3.5 Numerical Solution of Rayleigh's Equation -- 3.6 Shear Scaling -- 3.7 Oblique Modes and Squire Transformations -- 3.8 Rules of Thumb for a General Shear Instability -- 3.9 Numerical Examples -- 3.10 Perturbation Energetics -- 3.11 Necessary Conditions for Instability -- 3.12 The Wave Resonance Mechanism of Shear Instability -- 3.13 Quantitative Analysis of Wave Resonance -- 3.14 Summary -- 3.15 Appendix: Classical Proof of the Rayleigh and Fjørtoft Theorems -- 3.16 Further Reading -- 4 Parallel Shear Flow: the Effects of Stratification -- 4.1 The Richardson Number -- 4.2 Equilibria and Perturbations -- 4.3 Oblique Modes -- 4.4 The Taylor-Goldstein Equation -- 4.5 Application to Internal Wave Phenomena -- 4.6 Analytical Examples of Instability in Stratified Shear Flows -- 4.7 The Miles-Howard Theorem -- 4.8 Howard's Semicircle Theorem -- 4.9 Energetics -- 4.10 Summary -- 4.11 Further Reading -- 4.12 Appendix: Veering Flows -- 4.13 Appendix: Spatial Growth.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5 Parallel Shear Flow: the Effects of Viscosity -- 5.1 Conditions for Equilibrium -- 5.2 Conditions for Quasi-Equilibrium: the Frozen Flow Approximation -- 5.3 The Orr-Sommerfeld Equation -- 5.4 Boundary Conditions for Viscous Fluid -- 5.5 Numerical Solution of the Orr-Sommerfeld Equation -- 5.6 Oblique Modes -- 5.7 Shear Scaling and the Reynolds Number -- 5.8 Numerical Examples -- 5.9 Perturbation Energetics in Viscous Flow -- 5.10 Summary -- 6 Synthesis: Viscous, Diffusive, Inhomogeneous, Parallel Shear Flow -- 6.1 Expanding the Basic Equations -- 6.2 Numerical Solution -- 6.3 2D and Oblique Modes: Squire Transformations -- 6.4 Shear and Diffusion Scalings -- 6.5 Application: Instabilities of a Stably Stratified Shear Layer -- 6.6 Application: Analysis of Observational Data -- 6.7 Summary -- 6.8 Further Reading -- 7 Nonparallel Flow: Instabilities of a Cylindrical Vortex -- 7.1 Cyclostrophic Equilibrium -- 7.2 The Perturbation Equations -- 7.3 Barotropic Modes (m = 0) -- 7.4 Axisymmetric Modes (l = 0) -- 7.5 Analytical Example: the Rankine Vortex -- 7.6 Numerical Example: a Continuous Vortex -- 7.7 Wave Interactions in Barotropic Vortices -- 7.8 Mechanisms of Centrifugal and Convective Instabilities -- 7.9 Swirling Flows -- 7.10 Summary -- 7.11 Further Reading -- 8 Instability in a Rotating Environment -- 8.1 Frontal Zones -- 8.2 Geostrophic Equilibrium and the Thermal Wind Balance -- 8.3 The Perturbation Equations -- 8.4 Energetics -- 8.5 The Vertical Vorticity Equation -- 8.6 Analytical Solution #1: Inertial and Symmetric Instabilities -- 8.7 Analytical Solution #2: Baroclinic Instability -- 8.8 Numerical Solution Method -- 8.9 Instability in the Ageostrophic Regime -- 8.10 Summary -- 8.11 Further Reading -- 9 Convective Instability in Complex Fluids -- 9.1 Conditional Instability in a Moist Atmosphere or a Freezing Ocean.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">9.2 Double Diffusive Instabilities -- 9.3 Bioconvection -- 9.4 CO[sub(2)] Sequestration -- 10 Summary -- 10.1 Equilibrium States -- 10.2 Instabilities -- Part II The View Ahead -- 11 Beyond Normal Modes -- 11.1 Instability as an Initial Value Problem -- 11.2 Transient Growth in Simple Linear Systems -- 11.3 Computing the Optimal Initial Condition -- 11.4 Optimizing Growth at t = 0[sup(+)] -- 11.5 Growth at Short and Long Times: a Simple Example -- 11.6 Example: The Piecewise Shear Layer -- 11.7 Mechanics of Transient Growth in a Shear Layer -- 11.8 Generalizing the Inner Product -- 11.9 Summary -- 11.10 Appendix: Singular Value Decomposition -- 11.11 Further Reading -- 12 Instability and Turbulence -- 12.1 Secondary Instabilities and the Transition to Turbulence -- 12.2 Turbulence-Driven Instabilities -- 12.3 Cyclic Instability -- 12.4 Further Reading -- 13 Refining the Numerical Methods -- 13.1 Higher-Order Finite Differences -- 13.2 Finite Differences on an Adaptive Grid -- 13.3 Galerkin Methods -- 13.4 The Shooting Method -- 13.5 Generalizations -- 13.6 Further Reading -- Appendix A Homework Exercises -- Appendix B Projects -- References -- Index.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="506" ind1=" " ind2=" "><subfield code="a">Open Access title.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Title from publisher's bibliographic system (viewed on 19 Apr 2019).</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Instabilities are present in all natural fluids from rivers to atmospheres. This book considers the physical processes that generate instability. Part I describes the normal mode instabilities most important in geophysical applications, including convection, shear instability and baroclinic instability. Classical analytical approaches are covered, while also emphasising numerical methods, mechanisms such as internal wave resonance, and simple `rules of thumb' that permit assessment of instability quickly and intuitively. Part II introduces the cutting edge: nonmodal instabilities, the relationship between instability and turbulence, self-organised criticality, and advanced numerical techniques. Featuring numerous exercises and projects, the book is ideal for advanced students and researchers wishing to understand flow instability and apply it to their own research. It can be used to teach courses in oceanography, atmospheric science, coastal engineering, applied mathematics and environmental science. Exercise solutions and MATLAB® examples are provided online. Also available as Open Access on Cambridge Core.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geophysics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Geodynamics.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Marine geophysics.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">1-108-70301-1</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Carpenter, Jeffrey R.,</subfield><subfield code="d">1979-</subfield><subfield code="e">author.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-07-29 01:05:48 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-04-13 22:04:18 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5339479190004498&amp;Force_direct=true</subfield><subfield code="Z">5339479190004498</subfield><subfield code="b">Available</subfield><subfield code="8">5339479190004498</subfield></datafield></record></collection>