New Advances in Fluid Structure Interaction

Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples o...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2022
Language:English
Physical Description:1 electronic resource (308 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04977nam-a2201189z--4500
001 993553546104498
005 20231214132945.0
006 m o d
007 cr|mn|---annan
008 202208s2022 xx |||||o ||| 0|eng d
035 |a (CKB)5600000000483119 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/91205 
035 |a (EXLCZ)995600000000483119 
041 0 |a eng 
100 1 |a Chen, Wenli  |4 edt 
245 1 0 |a New Advances in Fluid Structure Interaction 
260 |a Basel  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2022 
300 |a 1 electronic resource (308 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Fluid–structure interactions (FSIs) play a crucial role in the design, construction, service and maintenance of many engineering applications, e.g., aircraft, towers, pipes, offshore platforms and long-span bridges. The old Tacoma Narrows Bridge (1940) is probably one of the most infamous examples of serious accidents due to the action of FSIs. Aircraft wings and wind-turbine blades can be broken because of FSI-induced oscillations. To alleviate or eliminate these unfavorable effects, FSIs must be dealt with in ocean, coastal, offshore and marine engineering to design safe and sustainable engineering structures. In addition, the wind effects on plants and the resultant wind-induced motions are examples of FSIs in nature. To meet the objectives of progress and innovation in FSIs in various scenarios of engineering applications and control schemes, this book includes 15 research studies and collects the most recent and cutting-edge developments on these relevant issues. The topics cover different areas associated with FSIs, including wind loads, flow control, energy harvesting, buffeting and flutter, complex flow characteristics, train–bridge interactions and the application of neural networks in related fields. In summary, these complementary contributions in this publication provide a volume of recent knowledge in the growing field of FSIs. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a aerodynamic forces 
653 |a pressure distribution 
653 |a turbulence intensity 
653 |a twin-box girder 
653 |a trailing-edge reattachment 
653 |a trailing edge 
653 |a trailing-edge-changeable streamlined section mode 
653 |a limit cycle flutter 
653 |a hard flutter 
653 |a flutter stability 
653 |a wind engineering 
653 |a wind tunnel test 
653 |a wind-train-bridge system 
653 |a flow visualization 
653 |a flapping fringe 
653 |a CFD simulation 
653 |a vortex attenuation 
653 |a aerodynamics enhancement 
653 |a unsteady aerodynamic force 
653 |a single box girder 
653 |a Strouhal number 
653 |a linear stability analysis 
653 |a high-speed train 
653 |a enclosed housing for sound emission alleviation 
653 |a pressure wave 
653 |a unsteady aerodynamic pressure 
653 |a load patterns 
653 |a wake control 
653 |a drag reduction 
653 |a MSBC 
653 |a square cylinder 
653 |a numerical simulation 
653 |a wind characteristics 
653 |a wind tunnel testing 
653 |a complex terrain 
653 |a model truncation 
653 |a transition section 
653 |a deep learning 
653 |a prediction 
653 |a aerostatic performance 
653 |a shape 
653 |a convolutional neural networks 
653 |a long-span bridge 
653 |a buffeting response 
653 |a sectional model 
653 |a aerodynamic admittance 
653 |a integrated transfer function 
653 |a flow control 
653 |a traveling wave wall 
653 |a circular cylinder 
653 |a CFD 
653 |a wind turbines 
653 |a aerodynamic characteristics 
653 |a vortex shedding 
653 |a time domain method 
653 |a frequency domain method 
653 |a background and resonance coupled components 
653 |a wind induced dynamic responses 
653 |a equivalent static wind load 
653 |a aerodynamic shape optimization 
653 |a surrogate model 
653 |a wind energy harvester 
653 |a galloping 
653 |a passive jet control 
653 |a tower wake characteristics 
653 |a cobra probe 
776 |z 3-0365-4639-1 
776 |z 3-0365-4640-5 
700 1 |a Yang, Zifeng  |4 edt 
700 1 |a Hu, Gang  |4 edt 
700 1 |a Jing, Haiquan  |4 edt 
700 1 |a Wang, Junlei  |4 edt 
700 1 |a Chen, Wenli  |4 oth 
700 1 |a Yang, Zifeng  |4 oth 
700 1 |a Hu, Gang  |4 oth 
700 1 |a Jing, Haiquan  |4 oth 
700 1 |a Wang, Junlei  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:37:56 Europe/Vienna  |f system  |c marc21  |a 2022-08-13 21:17:26 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5339473640004498&Force_direct=true  |Z 5339473640004498  |b Available  |8 5339473640004498