Matching minors in bipartite graphs

In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of...

Full description

Saved in:
Bibliographic Details
Superior document:Foundations of computing
:
Year of Publication:2022
Language:English
Series:Foundations of computing
Physical Description:1 electronic resource (476 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993549278004498
ctrlnum (CKB)5700000000101233
(oapen)https://directory.doabooks.org/handle/20.500.12854/87653
(EXLCZ)995700000000101233
collection bib_alma
record_format marc
spelling Wiederrecht, Sebastian auth
Matching minors in bipartite graphs
Berlin Universitätsverlag der Technischen Universität Berlin 2022
1 electronic resource (476 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Foundations of computing
In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor.
English
Algorithms & data structures bicssc
matching minor; structural graph theory; bipartite; perfect matching
3-7983-3252-5
language English
format eBook
author Wiederrecht, Sebastian
spellingShingle Wiederrecht, Sebastian
Matching minors in bipartite graphs
Foundations of computing
author_facet Wiederrecht, Sebastian
author_variant s w sw
author_sort Wiederrecht, Sebastian
title Matching minors in bipartite graphs
title_full Matching minors in bipartite graphs
title_fullStr Matching minors in bipartite graphs
title_full_unstemmed Matching minors in bipartite graphs
title_auth Matching minors in bipartite graphs
title_new Matching minors in bipartite graphs
title_sort matching minors in bipartite graphs
series Foundations of computing
series2 Foundations of computing
publisher Universitätsverlag der Technischen Universität Berlin
publishDate 2022
physical 1 electronic resource (476 p.)
isbn 3-7983-3252-5
illustrated Not Illustrated
work_keys_str_mv AT wiederrechtsebastian matchingminorsinbipartitegraphs
status_str n
ids_txt_mv (CKB)5700000000101233
(oapen)https://directory.doabooks.org/handle/20.500.12854/87653
(EXLCZ)995700000000101233
carrierType_str_mv cr
hierarchy_parent_title Foundations of computing
is_hierarchy_title Matching minors in bipartite graphs
container_title Foundations of computing
_version_ 1796651924413480960
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01868nam-a2200289z--4500</leader><controlfield tag="001">993549278004498</controlfield><controlfield tag="005">20231214133046.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202207s2022 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5700000000101233</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/87653</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995700000000101233</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wiederrecht, Sebastian</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matching minors in bipartite graphs</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Berlin</subfield><subfield code="b">Universitätsverlag der Technischen Universität Berlin</subfield><subfield code="c">2022</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (476 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Foundations of computing</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this thesis we adapt fundamental parts of the Graph Minors series of Robertson and Seymour for the study of matching minors and investigate a connection to the study of directed graphs. We develope matching theoretic to established results of graph minor theory: We characterise the existence of a cross over a conformal cycle by means of a topological property. Furthermore, we develope a theory for perfect matching width, a width parameter for graphs with perfect matchings introduced by Norin. here we show that the disjoint alternating paths problem can be solved in polynomial time on graphs of bounded width. Moreover, we show that every bipartite graph with high perfect matching width must contain a large grid as a matching minor. Finally, we prove an analogue of the we known Flat Wall theorem and provide a qualitative description of all bipartite graphs which exclude a fixed matching minor.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algorithms &amp; data structures</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">matching minor; structural graph theory; bipartite; perfect matching</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-7983-3252-5</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:41:16 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-07-14 08:50:39 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338973110004498&amp;Force_direct=true</subfield><subfield code="Z">5338973110004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338973110004498</subfield></datafield></record></collection>