New directions in geometric and applied knot theory / / edited by Philipp Reiter, Simon Blatt and Armin Schikorra.

The aim of this book is to present recent results in both theoretical and applied knot theory&#8212which are at the same time stimulating for leading researchers in the &#64257eld as well as accessible to non-experts. The book comprises recent research results while covering a wide range of...

Full description

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Berlin ;, Boston : : De Gruyter,, [2018]
©2018
Year of Publication:2018
Language:English
Physical Description:1 online resource (288 pages) :; illustrations
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993548669404498
ctrlnum (CKB)4920000000094019
(NjHacI)994920000000094019
(MiAaPQ)EBC6018147
(Au-PeEL)EBL6018147
(OCoLC)1105777553
(oapen)https://directory.doabooks.org/handle/20.500.12854/54569
(EXLCZ)994920000000094019
collection bib_alma
record_format marc
spelling Blatt, Simon auth
New directions in geometric and applied knot theory / edited by Philipp Reiter, Simon Blatt and Armin Schikorra.
De Gruyter 2018
Berlin ; Boston : De Gruyter, [2018]
©2018
1 online resource (288 pages) : illustrations
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on: online resource; title from PDF information screen (De Gruyter, viewed November 17, 2022).
Intro -- 1 Introduction -- Geometric curvature energies: facts, trends, and open problems -- 2.1 Facts -- 2.2 Trends and open problems -- Bibliography -- On Möbius invariant decomposition of the Möbius energy -- 3.1 O'Hara's knot energies -- 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture -- 3.3 Basic properties of the Möbius energy -- 3.4 The Möbius invariant decomposition -- 3.4.1 The decomposition -- 3.4.2 Variational formulae -- 3.4.3 The Möbius invariance -- Bibliography -- Pseudogradient Flows of Geometric Energies -- 4.1 Introduction -- 4.2 Banach Bundles -- 4.2.1 General Fiber Bundles -- 4.2.2 Banach Bundles and Hilbert Bundles -- 4.3 Riesz Structures -- 4.3.1 Riesz Structures -- 4.3.2 Riesz Bundle Structures -- 4.3.3 Riesz Manifolds -- 4.4 Pseudogradient Flow -- 4.5 Applications -- 4.5.1 Minimal Surfaces -- 4.5.2 Elasticae -- 4.5.3 Euler-Bernoulli Energy and Euler Elastica -- 4.5.4 Willmore Energy -- 4.6 Final Remarks -- Bibliography -- Discrete knot energies -- 5.1 Introduction -- 5.1.1 Notation -- 5.2 Möbius Energy -- 5.3 Integral Menger Curvature -- 5.4 Thickness -- A.1 Appendix: Postlude in -convergence -- Bibliography -- Khovanov homology and torsion -- 6.1 Introduction -- 6.2 Definition and structure of Khovanov link homology -- 6.3 Torsion of Khovanov link homology -- 6.4 Homological invariants of alternating and quasi-alternating cobordisms -- Bibliography -- Quadrisecants and essential secants of knots -- 7.1 Introduction -- 7.2 Quadrisecants -- 7.2.1 Essential secants -- 7.2.2 Results about quadrisecants -- 7.2.3 Counting quadrisecants and quadrisecant approximations. -- 7.3 Key ideas in showing quadrisecants exist -- 7.3.1 Trisecants and quadrisecants. -- 7.3.2 Structure of the set of trisecants. -- 7.4 Applications of essential secants and quadrisecants -- 7.4.1 Total curvature -- 7.4.2 Second Hull.
7.4.3 Ropelength -- 7.4.4 Distortion -- 7.4.5 Final Remarks -- Bibliography -- Polygonal approximation of unknots by quadrisecants -- 8.1 Introduction -- 8.2 Quadrisecant approximation of knots -- 8.3 Quadrisecants of Polygonal Unknots -- 8.4 Quadrisecants of Smooth Unknots -- 8.5 Finding Quadrisecants -- 8.6 Test for Good Approximations -- Bibliography -- Open knotting -- 9.1 Introduction -- 9.2 Defining open knotting -- 9.2.1 Single closure techniques -- 9.2.2 Stochastic techniques -- 9.2.3 Other closure techniques -- 9.2.4 Topology of knotted arcs -- 9.3 Visualizing knotting in open chains using the knotting fingerprint -- 9.4 Features of knotting fingerprints, knotted cores, and crossing changes -- 9.5 Conclusions -- Bibliography -- The Knot Spectrum of Random Knot Spaces -- 10.1 Introduction -- 10.2 Basic mathematical background in knot theory -- 10.3 Spaces of random knots, knot sampling and knot identification -- 10.4 An analysis of the behavior of PK with respect to length and radius -- 10.4.1 PK(L,R) as a function of length L for fixed R -- 10.4.2 PK(L,R) as a function of confinement radius R for fixed L -- 10.4.3 Modeling PK as a function of length and radius. -- 10.5 Numerical results -- 10.5.1 The numerical analysis of PK(L,R) based on the old data -- 10.5.2 The numerical analysis of PK(L,R) based on the new data -- 10.5.3 The location of local maxima of PK(L,R) -- 10.6 The influence of the confinement radius on the distributions of knot types -- 10.6.1 3-, 4-, and 5-crossing knots -- 10.6.2 6-crossing knots -- 10.6.3 7-crossing knots -- 10.6.4 8-crossing knots -- 10.6.5 9-crossing knots -- 10.6.6 10-crossing knots -- 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement -- 10.7.1 3-, 4-, and 5-crossing knots -- 10.7.2 6-crossing knots -- 10.7.3 7-crossing knots -- 10.7.4 8-crossing knots.
10.7.5 9-crossing knots -- 10.7.6 10-crossing knots -- 10.8 Conclusions -- Bibliography -- Sampling Spaces of Thick Polygons -- 11.1 Introduction -- 11.2 Classical Perspectives -- 11.2.1 Thickness of polygons -- 11.2.2 Self-avoiding random walks -- 11.2.3 Closed polygons: fold algorithm -- 11.2.4 Closed polygons: crankshaft algorithm -- 11.2.5 Quaternionic Perspective -- 11.3 Sampling Thick Polygons -- 11.3.1 Primer on Probability Theory -- 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016 -- 11.3.3 Closed polygons: Chapman algorithm -- 11.4 Discussion and Conclusions -- Bibliography -- Equilibria of elastic cable knots and links -- 12.1 Introduction -- 12.2 Theory of elastic braids made of two equidistant strands -- 12.2.1 Equidistant curves, reference frames and strains -- 12.2.2 Equations for the standard 2-braid -- 12.2.3 Kinematics equations -- 12.3 Numerical solution -- 12.3.1 Torus knots -- 12.3.2 Torus links -- 12.4 Concluding remarks -- Bibliography -- Groundstate energy spectra of knots and links: magnetic versus bending energy -- 13.1 Introduction -- 13.2 Magnetic knots and links in ideal conditions -- 13.3 The prototype problem -- 13.4 Relaxation of magnetic knots and constrained minima -- 13.5 Groundstate magnetic energy spectra -- 13.6 Bending energy spectra -- 13.7 Magnetic energy versus bending energy -- 13.8 Conclusions -- Bibliography.
The aim of this book is to present recent results in both theoretical and applied knot theory&#8212which are at the same time stimulating for leading researchers in the &#64257eld as well as accessible to non-experts. The book comprises recent research results while covering a wide range of di&#64256erent sub-disciplines, such as the young &#64257eld of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.
English
Knot theory.
3-11-057148-X
3-11-057149-8
Reiter, Philipp, editor.
Blatt, Simon, editor.
Schikorra, Armin, editor.
language English
format eBook
author Blatt, Simon
spellingShingle Blatt, Simon
New directions in geometric and applied knot theory /
Intro -- 1 Introduction -- Geometric curvature energies: facts, trends, and open problems -- 2.1 Facts -- 2.2 Trends and open problems -- Bibliography -- On Möbius invariant decomposition of the Möbius energy -- 3.1 O'Hara's knot energies -- 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture -- 3.3 Basic properties of the Möbius energy -- 3.4 The Möbius invariant decomposition -- 3.4.1 The decomposition -- 3.4.2 Variational formulae -- 3.4.3 The Möbius invariance -- Bibliography -- Pseudogradient Flows of Geometric Energies -- 4.1 Introduction -- 4.2 Banach Bundles -- 4.2.1 General Fiber Bundles -- 4.2.2 Banach Bundles and Hilbert Bundles -- 4.3 Riesz Structures -- 4.3.1 Riesz Structures -- 4.3.2 Riesz Bundle Structures -- 4.3.3 Riesz Manifolds -- 4.4 Pseudogradient Flow -- 4.5 Applications -- 4.5.1 Minimal Surfaces -- 4.5.2 Elasticae -- 4.5.3 Euler-Bernoulli Energy and Euler Elastica -- 4.5.4 Willmore Energy -- 4.6 Final Remarks -- Bibliography -- Discrete knot energies -- 5.1 Introduction -- 5.1.1 Notation -- 5.2 Möbius Energy -- 5.3 Integral Menger Curvature -- 5.4 Thickness -- A.1 Appendix: Postlude in -convergence -- Bibliography -- Khovanov homology and torsion -- 6.1 Introduction -- 6.2 Definition and structure of Khovanov link homology -- 6.3 Torsion of Khovanov link homology -- 6.4 Homological invariants of alternating and quasi-alternating cobordisms -- Bibliography -- Quadrisecants and essential secants of knots -- 7.1 Introduction -- 7.2 Quadrisecants -- 7.2.1 Essential secants -- 7.2.2 Results about quadrisecants -- 7.2.3 Counting quadrisecants and quadrisecant approximations. -- 7.3 Key ideas in showing quadrisecants exist -- 7.3.1 Trisecants and quadrisecants. -- 7.3.2 Structure of the set of trisecants. -- 7.4 Applications of essential secants and quadrisecants -- 7.4.1 Total curvature -- 7.4.2 Second Hull.
7.4.3 Ropelength -- 7.4.4 Distortion -- 7.4.5 Final Remarks -- Bibliography -- Polygonal approximation of unknots by quadrisecants -- 8.1 Introduction -- 8.2 Quadrisecant approximation of knots -- 8.3 Quadrisecants of Polygonal Unknots -- 8.4 Quadrisecants of Smooth Unknots -- 8.5 Finding Quadrisecants -- 8.6 Test for Good Approximations -- Bibliography -- Open knotting -- 9.1 Introduction -- 9.2 Defining open knotting -- 9.2.1 Single closure techniques -- 9.2.2 Stochastic techniques -- 9.2.3 Other closure techniques -- 9.2.4 Topology of knotted arcs -- 9.3 Visualizing knotting in open chains using the knotting fingerprint -- 9.4 Features of knotting fingerprints, knotted cores, and crossing changes -- 9.5 Conclusions -- Bibliography -- The Knot Spectrum of Random Knot Spaces -- 10.1 Introduction -- 10.2 Basic mathematical background in knot theory -- 10.3 Spaces of random knots, knot sampling and knot identification -- 10.4 An analysis of the behavior of PK with respect to length and radius -- 10.4.1 PK(L,R) as a function of length L for fixed R -- 10.4.2 PK(L,R) as a function of confinement radius R for fixed L -- 10.4.3 Modeling PK as a function of length and radius. -- 10.5 Numerical results -- 10.5.1 The numerical analysis of PK(L,R) based on the old data -- 10.5.2 The numerical analysis of PK(L,R) based on the new data -- 10.5.3 The location of local maxima of PK(L,R) -- 10.6 The influence of the confinement radius on the distributions of knot types -- 10.6.1 3-, 4-, and 5-crossing knots -- 10.6.2 6-crossing knots -- 10.6.3 7-crossing knots -- 10.6.4 8-crossing knots -- 10.6.5 9-crossing knots -- 10.6.6 10-crossing knots -- 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement -- 10.7.1 3-, 4-, and 5-crossing knots -- 10.7.2 6-crossing knots -- 10.7.3 7-crossing knots -- 10.7.4 8-crossing knots.
10.7.5 9-crossing knots -- 10.7.6 10-crossing knots -- 10.8 Conclusions -- Bibliography -- Sampling Spaces of Thick Polygons -- 11.1 Introduction -- 11.2 Classical Perspectives -- 11.2.1 Thickness of polygons -- 11.2.2 Self-avoiding random walks -- 11.2.3 Closed polygons: fold algorithm -- 11.2.4 Closed polygons: crankshaft algorithm -- 11.2.5 Quaternionic Perspective -- 11.3 Sampling Thick Polygons -- 11.3.1 Primer on Probability Theory -- 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016 -- 11.3.3 Closed polygons: Chapman algorithm -- 11.4 Discussion and Conclusions -- Bibliography -- Equilibria of elastic cable knots and links -- 12.1 Introduction -- 12.2 Theory of elastic braids made of two equidistant strands -- 12.2.1 Equidistant curves, reference frames and strains -- 12.2.2 Equations for the standard 2-braid -- 12.2.3 Kinematics equations -- 12.3 Numerical solution -- 12.3.1 Torus knots -- 12.3.2 Torus links -- 12.4 Concluding remarks -- Bibliography -- Groundstate energy spectra of knots and links: magnetic versus bending energy -- 13.1 Introduction -- 13.2 Magnetic knots and links in ideal conditions -- 13.3 The prototype problem -- 13.4 Relaxation of magnetic knots and constrained minima -- 13.5 Groundstate magnetic energy spectra -- 13.6 Bending energy spectra -- 13.7 Magnetic energy versus bending energy -- 13.8 Conclusions -- Bibliography.
author_facet Blatt, Simon
Reiter, Philipp,
Blatt, Simon,
Schikorra, Armin,
author_variant s b sb
author2 Reiter, Philipp,
Blatt, Simon,
Schikorra, Armin,
author2_variant p r pr
s b sb
a s as
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Blatt, Simon
title New directions in geometric and applied knot theory /
title_full New directions in geometric and applied knot theory / edited by Philipp Reiter, Simon Blatt and Armin Schikorra.
title_fullStr New directions in geometric and applied knot theory / edited by Philipp Reiter, Simon Blatt and Armin Schikorra.
title_full_unstemmed New directions in geometric and applied knot theory / edited by Philipp Reiter, Simon Blatt and Armin Schikorra.
title_auth New directions in geometric and applied knot theory /
title_new New directions in geometric and applied knot theory /
title_sort new directions in geometric and applied knot theory /
publisher De Gruyter
De Gruyter,
publishDate 2018
physical 1 online resource (288 pages) : illustrations
contents Intro -- 1 Introduction -- Geometric curvature energies: facts, trends, and open problems -- 2.1 Facts -- 2.2 Trends and open problems -- Bibliography -- On Möbius invariant decomposition of the Möbius energy -- 3.1 O'Hara's knot energies -- 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture -- 3.3 Basic properties of the Möbius energy -- 3.4 The Möbius invariant decomposition -- 3.4.1 The decomposition -- 3.4.2 Variational formulae -- 3.4.3 The Möbius invariance -- Bibliography -- Pseudogradient Flows of Geometric Energies -- 4.1 Introduction -- 4.2 Banach Bundles -- 4.2.1 General Fiber Bundles -- 4.2.2 Banach Bundles and Hilbert Bundles -- 4.3 Riesz Structures -- 4.3.1 Riesz Structures -- 4.3.2 Riesz Bundle Structures -- 4.3.3 Riesz Manifolds -- 4.4 Pseudogradient Flow -- 4.5 Applications -- 4.5.1 Minimal Surfaces -- 4.5.2 Elasticae -- 4.5.3 Euler-Bernoulli Energy and Euler Elastica -- 4.5.4 Willmore Energy -- 4.6 Final Remarks -- Bibliography -- Discrete knot energies -- 5.1 Introduction -- 5.1.1 Notation -- 5.2 Möbius Energy -- 5.3 Integral Menger Curvature -- 5.4 Thickness -- A.1 Appendix: Postlude in -convergence -- Bibliography -- Khovanov homology and torsion -- 6.1 Introduction -- 6.2 Definition and structure of Khovanov link homology -- 6.3 Torsion of Khovanov link homology -- 6.4 Homological invariants of alternating and quasi-alternating cobordisms -- Bibliography -- Quadrisecants and essential secants of knots -- 7.1 Introduction -- 7.2 Quadrisecants -- 7.2.1 Essential secants -- 7.2.2 Results about quadrisecants -- 7.2.3 Counting quadrisecants and quadrisecant approximations. -- 7.3 Key ideas in showing quadrisecants exist -- 7.3.1 Trisecants and quadrisecants. -- 7.3.2 Structure of the set of trisecants. -- 7.4 Applications of essential secants and quadrisecants -- 7.4.1 Total curvature -- 7.4.2 Second Hull.
7.4.3 Ropelength -- 7.4.4 Distortion -- 7.4.5 Final Remarks -- Bibliography -- Polygonal approximation of unknots by quadrisecants -- 8.1 Introduction -- 8.2 Quadrisecant approximation of knots -- 8.3 Quadrisecants of Polygonal Unknots -- 8.4 Quadrisecants of Smooth Unknots -- 8.5 Finding Quadrisecants -- 8.6 Test for Good Approximations -- Bibliography -- Open knotting -- 9.1 Introduction -- 9.2 Defining open knotting -- 9.2.1 Single closure techniques -- 9.2.2 Stochastic techniques -- 9.2.3 Other closure techniques -- 9.2.4 Topology of knotted arcs -- 9.3 Visualizing knotting in open chains using the knotting fingerprint -- 9.4 Features of knotting fingerprints, knotted cores, and crossing changes -- 9.5 Conclusions -- Bibliography -- The Knot Spectrum of Random Knot Spaces -- 10.1 Introduction -- 10.2 Basic mathematical background in knot theory -- 10.3 Spaces of random knots, knot sampling and knot identification -- 10.4 An analysis of the behavior of PK with respect to length and radius -- 10.4.1 PK(L,R) as a function of length L for fixed R -- 10.4.2 PK(L,R) as a function of confinement radius R for fixed L -- 10.4.3 Modeling PK as a function of length and radius. -- 10.5 Numerical results -- 10.5.1 The numerical analysis of PK(L,R) based on the old data -- 10.5.2 The numerical analysis of PK(L,R) based on the new data -- 10.5.3 The location of local maxima of PK(L,R) -- 10.6 The influence of the confinement radius on the distributions of knot types -- 10.6.1 3-, 4-, and 5-crossing knots -- 10.6.2 6-crossing knots -- 10.6.3 7-crossing knots -- 10.6.4 8-crossing knots -- 10.6.5 9-crossing knots -- 10.6.6 10-crossing knots -- 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement -- 10.7.1 3-, 4-, and 5-crossing knots -- 10.7.2 6-crossing knots -- 10.7.3 7-crossing knots -- 10.7.4 8-crossing knots.
10.7.5 9-crossing knots -- 10.7.6 10-crossing knots -- 10.8 Conclusions -- Bibliography -- Sampling Spaces of Thick Polygons -- 11.1 Introduction -- 11.2 Classical Perspectives -- 11.2.1 Thickness of polygons -- 11.2.2 Self-avoiding random walks -- 11.2.3 Closed polygons: fold algorithm -- 11.2.4 Closed polygons: crankshaft algorithm -- 11.2.5 Quaternionic Perspective -- 11.3 Sampling Thick Polygons -- 11.3.1 Primer on Probability Theory -- 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016 -- 11.3.3 Closed polygons: Chapman algorithm -- 11.4 Discussion and Conclusions -- Bibliography -- Equilibria of elastic cable knots and links -- 12.1 Introduction -- 12.2 Theory of elastic braids made of two equidistant strands -- 12.2.1 Equidistant curves, reference frames and strains -- 12.2.2 Equations for the standard 2-braid -- 12.2.3 Kinematics equations -- 12.3 Numerical solution -- 12.3.1 Torus knots -- 12.3.2 Torus links -- 12.4 Concluding remarks -- Bibliography -- Groundstate energy spectra of knots and links: magnetic versus bending energy -- 13.1 Introduction -- 13.2 Magnetic knots and links in ideal conditions -- 13.3 The prototype problem -- 13.4 Relaxation of magnetic knots and constrained minima -- 13.5 Groundstate magnetic energy spectra -- 13.6 Bending energy spectra -- 13.7 Magnetic energy versus bending energy -- 13.8 Conclusions -- Bibliography.
isbn 3-11-057148-X
3-11-057149-8
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA612
callnumber-sort QA 3612.2 N49 42018
illustrated Illustrated
dewey-hundreds 500 - Science
dewey-tens 510 - Mathematics
dewey-ones 514 - Topology
dewey-full 514.224
dewey-sort 3514.224
dewey-raw 514.224
dewey-search 514.224
oclc_num 1105777553
work_keys_str_mv AT blattsimon newdirectionsingeometricandappliedknottheory
AT reiterphilipp newdirectionsingeometricandappliedknottheory
AT schikorraarmin newdirectionsingeometricandappliedknottheory
status_str n
ids_txt_mv (CKB)4920000000094019
(NjHacI)994920000000094019
(MiAaPQ)EBC6018147
(Au-PeEL)EBL6018147
(OCoLC)1105777553
(oapen)https://directory.doabooks.org/handle/20.500.12854/54569
(EXLCZ)994920000000094019
carrierType_str_mv cr
is_hierarchy_title New directions in geometric and applied knot theory /
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1787548700825878528
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01096nam a2200313 i 4500</leader><controlfield tag="001">993548669404498</controlfield><controlfield tag="005">20221117192732.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr |||||||||||</controlfield><controlfield tag="008">221117s2018 gw a o 000 0 eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4920000000094019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(NjHacI)994920000000094019</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC6018147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6018147</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1105777553</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/54569</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994920000000094019</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">NjHacI</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">NjHacl</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA612.2</subfield><subfield code="b">.N49 2018</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">514.224</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Blatt, Simon</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">New directions in geometric and applied knot theory /</subfield><subfield code="c">edited by Philipp Reiter, Simon Blatt and Armin Schikorra.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">De Gruyter</subfield><subfield code="c">2018</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin ;</subfield><subfield code="a">Boston :</subfield><subfield code="b">De Gruyter,</subfield><subfield code="c">[2018]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">©2018</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (288 pages) :</subfield><subfield code="b">illustrations</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on: online resource; title from PDF information screen (De Gruyter, viewed November 17, 2022).</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Intro -- 1 Introduction -- Geometric curvature energies: facts, trends, and open problems -- 2.1 Facts -- 2.2 Trends and open problems -- Bibliography -- On Möbius invariant decomposition of the Möbius energy -- 3.1 O'Hara's knot energies -- 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture -- 3.3 Basic properties of the Möbius energy -- 3.4 The Möbius invariant decomposition -- 3.4.1 The decomposition -- 3.4.2 Variational formulae -- 3.4.3 The Möbius invariance -- Bibliography -- Pseudogradient Flows of Geometric Energies -- 4.1 Introduction -- 4.2 Banach Bundles -- 4.2.1 General Fiber Bundles -- 4.2.2 Banach Bundles and Hilbert Bundles -- 4.3 Riesz Structures -- 4.3.1 Riesz Structures -- 4.3.2 Riesz Bundle Structures -- 4.3.3 Riesz Manifolds -- 4.4 Pseudogradient Flow -- 4.5 Applications -- 4.5.1 Minimal Surfaces -- 4.5.2 Elasticae -- 4.5.3 Euler-Bernoulli Energy and Euler Elastica -- 4.5.4 Willmore Energy -- 4.6 Final Remarks -- Bibliography -- Discrete knot energies -- 5.1 Introduction -- 5.1.1 Notation -- 5.2 Möbius Energy -- 5.3 Integral Menger Curvature -- 5.4 Thickness -- A.1 Appendix: Postlude in -convergence -- Bibliography -- Khovanov homology and torsion -- 6.1 Introduction -- 6.2 Definition and structure of Khovanov link homology -- 6.3 Torsion of Khovanov link homology -- 6.4 Homological invariants of alternating and quasi-alternating cobordisms -- Bibliography -- Quadrisecants and essential secants of knots -- 7.1 Introduction -- 7.2 Quadrisecants -- 7.2.1 Essential secants -- 7.2.2 Results about quadrisecants -- 7.2.3 Counting quadrisecants and quadrisecant approximations. -- 7.3 Key ideas in showing quadrisecants exist -- 7.3.1 Trisecants and quadrisecants. -- 7.3.2 Structure of the set of trisecants. -- 7.4 Applications of essential secants and quadrisecants -- 7.4.1 Total curvature -- 7.4.2 Second Hull.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">7.4.3 Ropelength -- 7.4.4 Distortion -- 7.4.5 Final Remarks -- Bibliography -- Polygonal approximation of unknots by quadrisecants -- 8.1 Introduction -- 8.2 Quadrisecant approximation of knots -- 8.3 Quadrisecants of Polygonal Unknots -- 8.4 Quadrisecants of Smooth Unknots -- 8.5 Finding Quadrisecants -- 8.6 Test for Good Approximations -- Bibliography -- Open knotting -- 9.1 Introduction -- 9.2 Defining open knotting -- 9.2.1 Single closure techniques -- 9.2.2 Stochastic techniques -- 9.2.3 Other closure techniques -- 9.2.4 Topology of knotted arcs -- 9.3 Visualizing knotting in open chains using the knotting fingerprint -- 9.4 Features of knotting fingerprints, knotted cores, and crossing changes -- 9.5 Conclusions -- Bibliography -- The Knot Spectrum of Random Knot Spaces -- 10.1 Introduction -- 10.2 Basic mathematical background in knot theory -- 10.3 Spaces of random knots, knot sampling and knot identification -- 10.4 An analysis of the behavior of PK with respect to length and radius -- 10.4.1 PK(L,R) as a function of length L for fixed R -- 10.4.2 PK(L,R) as a function of confinement radius R for fixed L -- 10.4.3 Modeling PK as a function of length and radius. -- 10.5 Numerical results -- 10.5.1 The numerical analysis of PK(L,R) based on the old data -- 10.5.2 The numerical analysis of PK(L,R) based on the new data -- 10.5.3 The location of local maxima of PK(L,R) -- 10.6 The influence of the confinement radius on the distributions of knot types -- 10.6.1 3-, 4-, and 5-crossing knots -- 10.6.2 6-crossing knots -- 10.6.3 7-crossing knots -- 10.6.4 8-crossing knots -- 10.6.5 9-crossing knots -- 10.6.6 10-crossing knots -- 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement -- 10.7.1 3-, 4-, and 5-crossing knots -- 10.7.2 6-crossing knots -- 10.7.3 7-crossing knots -- 10.7.4 8-crossing knots.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">10.7.5 9-crossing knots -- 10.7.6 10-crossing knots -- 10.8 Conclusions -- Bibliography -- Sampling Spaces of Thick Polygons -- 11.1 Introduction -- 11.2 Classical Perspectives -- 11.2.1 Thickness of polygons -- 11.2.2 Self-avoiding random walks -- 11.2.3 Closed polygons: fold algorithm -- 11.2.4 Closed polygons: crankshaft algorithm -- 11.2.5 Quaternionic Perspective -- 11.3 Sampling Thick Polygons -- 11.3.1 Primer on Probability Theory -- 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016 -- 11.3.3 Closed polygons: Chapman algorithm -- 11.4 Discussion and Conclusions -- Bibliography -- Equilibria of elastic cable knots and links -- 12.1 Introduction -- 12.2 Theory of elastic braids made of two equidistant strands -- 12.2.1 Equidistant curves, reference frames and strains -- 12.2.2 Equations for the standard 2-braid -- 12.2.3 Kinematics equations -- 12.3 Numerical solution -- 12.3.1 Torus knots -- 12.3.2 Torus links -- 12.4 Concluding remarks -- Bibliography -- Groundstate energy spectra of knots and links: magnetic versus bending energy -- 13.1 Introduction -- 13.2 Magnetic knots and links in ideal conditions -- 13.3 The prototype problem -- 13.4 Relaxation of magnetic knots and constrained minima -- 13.5 Groundstate magnetic energy spectra -- 13.6 Bending energy spectra -- 13.7 Magnetic energy versus bending energy -- 13.8 Conclusions -- Bibliography.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The aim of this book is to present recent results in both theoretical and applied knot theory&amp;#8212which are at the same time stimulating for leading researchers in the &amp;#64257eld as well as accessible to non-experts. The book comprises recent research results while covering a wide range of di&amp;#64256erent sub-disciplines, such as the young &amp;#64257eld of geometric knot theory, combinatorial knot theory, as well as applications in microbiology and theoretical physics.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Knot theory.</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-11-057148-X</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-11-057149-8</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Reiter, Philipp,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blatt, Simon,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schikorra, Armin,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-07-07 00:39:33 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-10 04:18:40 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338883370004498&amp;Force_direct=true</subfield><subfield code="Z">5338883370004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338883370004498</subfield></datafield></record></collection>