The Future European Energy System : : Renewable Energy, Flexibility Options and Technological Progress.

This open access book analyzes the transition toward a low-carbon energy system in Europe under the aspects of flexibility and technological progress. By covering the main energy sectors – including the industry, residential, tertiary and transport sector as well as the heating and electricity secto...

Full description

Saved in:
Bibliographic Details
:
TeilnehmendeR:
Place / Publishing House:Cham : : Springer International Publishing AG,, 2021.
©2021.
Year of Publication:2021
Language:English
Physical Description:1 online resource (321 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
Table of Contents:
  • Intro
  • Foreword
  • Acknowledgments
  • Contents
  • Editors and Contributors
  • About the Editors
  • Contributors
  • List of Figures
  • List of Tables
  • Part IIntroduction, Scenario Description and Model Coupling Approach
  • 1 Introduction
  • Reference
  • 2 Scenario Storyline in Context of Decarbonization Pathways for a Future European Energy System
  • 2.1 Introduction
  • 2.2 Scenario Definition and General Drivers
  • 2.3 Socio-Technical Scenario Framework
  • 2.4 Moderate Renewable Energy Source Scenario (Mod-RES)
  • 2.5 Centralized versus Decentralized High Renewable Scenario (High-RES)
  • 2.5.1 Centralized High-RES Scenario
  • 2.5.2 Decentralized High-RES Scenario
  • 2.6 Conclusions
  • References
  • 3 Model Coupling Approach for the Analysis of the Future European Energy System
  • 3.1 Introduction
  • 3.2 Description of Applied Models
  • 3.2.1 ELTRAMOD
  • 3.2.2 TIMES-Heat-EU
  • 3.2.3 PowerACE
  • 3.2.4 FORECAST
  • 3.2.5 eLOAD
  • 3.2.6 ASTRA
  • 3.2.7 TE3
  • 3.2.8 eLCA and sLCA
  • 3.2.9 πESA
  • 3.3 REFLEX Energy Models System
  • References
  • Part IITechnological Progress
  • 4 Deriving Experience Curves and Implementing Technological Learning in Energy System Models
  • 4.1 Introduction
  • 4.1.1 History and Concept
  • 4.1.2 Key Applications of Experience Curves
  • 4.1.3 Key Issues and Drawbacks of Experience Curves
  • 4.2 Data Collection and Derivation of Experience Curves
  • 4.2.1 Functional Unit and System Boundaries
  • 4.2.2 Correction for Currency and Inflation
  • 4.2.3 Deriving Experience Curve Parameters
  • 4.3 Experience Curves in Energy System Models
  • 4.3.1 Model Implementation of Experience Curves
  • 4.3.2 Issues with Implementation of Experience Curves in Energy Models
  • 4.3.3 Description of Energy Models with Implemented Experience Curves
  • 4.4 State-of-the-Art Experience Curves and Modeling Results.
  • 4.4.1 Overview of State-of-the-Art Experience Curves
  • 4.4.2 Deployments and Cost Developments of Relevant Technologies
  • 4.5 Lessons Learned
  • 4.5.1 Methodological Issues
  • 4.5.2 Model Implementation Issues
  • 4.6 Conclusions
  • References
  • 5 Electric Vehicle Market Diffusion in Main Non-European Markets
  • 5.1 Introduction
  • 5.1.1 Motivation
  • 5.1.2 Related Research and Research Question
  • 5.2 Considering Experience Curves in Market Diffusion Modeling and Scenario Definition
  • 5.2.1 The TE3 Model and Implementation of Experience Curves
  • 5.2.2 Framework of the Two Analyzed Scenarios for the Main Non-European Car Markets
  • 5.3 Results of Key Non-European Countries
  • 5.3.1 Effects on Cumulative Battery Capacity and Battery Costs
  • 5.3.2 Development of the Car Stock for the Four Main Markets in the Mod-RES and High-RES Scenario
  • 5.3.3 Critical Review and Limitations
  • 5.4 Summary and Conclusions
  • References
  • Part IIIDemand Side Flexibility and the Role of Disruptive Technologies
  • 6 Future Energy Demand Developments and Demand Side Flexibility in a Decarbonized Centralized Energy System
  • 6.1 Introduction
  • 6.2 Scenario Assumptions and Model Coupling
  • 6.3 Future Energy Demand and CO2 Emissions
  • 6.3.1 Decarbonizing the Transport Sector
  • 6.3.2 Decarbonizing the Residential and Tertiary Sector
  • 6.3.3 Decarbonizing the Industry Sector
  • 6.4 The Future Need for Demand Side Flexibility
  • 6.5 Conclusions
  • References
  • 7 Disruptive Demand Side Technologies: Market Shares and Impact on Flexibility in a Decentralized World
  • 7.1 Introduction
  • 7.1.1 Strategies for Decarbonizing Transport
  • 7.1.2 Technologies for Decarbonizing Industry
  • 7.1.3 Focus of this Study: Disruptive Technologies with Demand Side Flexibility
  • 7.2 Disruptive Technologies with Flexibility Potential.
  • 7.2.1 Photovoltaic Systems and Stationary Batteries
  • 7.2.2 Battery Electric Vehicles
  • 7.2.3 Hydrogen Electrolysis
  • 7.3 Scenario Assumptions and Methodology
  • 7.3.1 Scenario Assumptions for High-RES Decentralized
  • 7.3.2 Model Coupling Approach
  • 7.3.3 Methods Used for Technology Diffusion
  • 7.4 Results: Diffusion of Technologies and Energy Demand
  • 7.4.1 Installed Battery Capacity
  • 7.4.2 Vehicle Fleet Technology Composition and Resulting Energy Demand
  • 7.4.3 Radical Process Improvements in Industry and Their Implications for Future Electricity Demand
  • 7.5 Impacts of Disruptive Technologies on Demand Side Flexibility
  • 7.6 Discussion and Conclusions
  • References
  • 8 What is the Flexibility Potential in the Tertiary Sector?
  • 8.1 Introduction
  • 8.1.1 Overview of Demand Side Flexibility Markets
  • 8.1.2 Overview of Tertiary Sector and Potential Applications, Regulatory Environment
  • 8.2 Data Collection Methodology
  • 8.2.1 Research Questions
  • 8.2.2 Empirical Survey Introduction
  • 8.2.3 Issues Encountered Regarding Empirical Data
  • 8.3 Survey Results and Derived Flexibility Potentials
  • 8.3.1 Participation Interest in DSM
  • 8.3.2 Available Technologies
  • 8.3.3 Derived Flexibility Potentials (S-Curve)
  • 8.3.4 Lessons Learned and Issues Identified for Modelers
  • 8.4 Conclusions and Recommendations for Further Research
  • References
  • 9 A Techno-Economic Comparison of Demand Side Management with Other Flexibility Options
  • 9.1 Introduction
  • 9.2 Techno-Economic Characteristics of DSM in Comparison with Other Flexibility Options
  • 9.2.1 Technical Characteristics of DSM
  • 9.2.2 Activation and Initialization Costs of DSM
  • 9.3 Impact of DSM on Other Flexibility Options
  • 9.3.1 Framework of the Analysis
  • 9.3.2 Impact of DSM on the Operation of Conventional Power Plants and Pump Storage Plants.
  • 9.3.3 Impact of DSM on Imports and Exports
  • 9.4 Conclusions
  • References
  • Part IVFlexibility Options in the Electricity and Heating Sector
  • 10 Optimal Energy Portfolios in the Electricity Sector: Trade-Offs and Interplay Between Different Flexibility Options
  • 10.1 Introduction
  • 10.2 Data Input and Model Coupling
  • 10.3 Optimal Investments in Flexibility Options
  • 10.3.1 Sector Coupling Technologies
  • 10.3.2 Power Plant Mix
  • 10.3.3 Storages
  • 10.4 Sensitivity Analyses
  • 10.4.1 Impact of Limited DSM Potential and Reduced Battery Investment Costs on the Storage Value in the Electricity Market
  • 10.4.2 Impact of Higher Shares of Renewable Energy Sources
  • 10.5 Levelized Costs of Electricity and CO2 Abatement Costs
  • 10.6 Discussion and Conclusion
  • References
  • 11 Impact of Electricity Market Designs on Investments in Flexibility Options
  • 11.1 The European Debate on Electricity Market Design
  • 11.2 Research Design
  • 11.3 Development of the Conventional Generation Capacities and Wholesale Electricity Prices
  • 11.3.1 Mod-RES Scenario
  • 11.3.2 High-RES Decentralized Scenario
  • 11.3.3 High-RES Centralized Scenario
  • 11.4 Impact on Generation Adequacy
  • 11.5 Summary and Conclusions
  • References
  • 12 Optimal Energy Portfolios in the Heating Sector and Flexibility Potentials of Combined-Heat-Power Plants and District Heating Systems
  • 12.1 Introduction
  • 12.2 TIMES-Heat-EU Model
  • 12.3 Developments in the District Heating Sector
  • 12.3.1 Scenario Results
  • 12.3.2 CO2 Emissions in the Heating Sector
  • 12.3.3 Sensitivity Analysis
  • 12.4 Conclusion
  • References
  • Part VAnalysis of the Environmental and Socio-Impacts beyond the Greenhouse Gas Emission Reduction Targets
  • 13 Unintended Environmental Impacts at Local and Global Scale-Trade-Offs of a Low-Carbon Electricity System
  • 13.1 Introduction.
  • 13.2 Developing the Model Coupling Approach to Identify Environmental Trade-Offs
  • 13.2.1 Describing Relevant Input Parameters for the LCA Model in Context of the REFLEX Scenarios
  • 13.2.2 Coupling the Results of ELTRAMOD and the LCA Model to Determine Policy Implications
  • 13.3 Unintended Environmental Consequences of the European Low-Carbon Electricity System
  • 13.3.1 Environmental Impacts at Local Scale and the Challenges for European Member States
  • 13.3.2 Resource Depletion in REFLEX Mitigation Scenarios as a Backdrop of Global Trade Uncertainty
  • 13.4 Conclusions and Policy Implications
  • References
  • 14 Assessing Social Impacts in Current and Future Electricity Production in the European Union
  • 14.1 Introduction
  • 14.2 Method
  • 14.2.1 Background to the SOCA Add-on for Social Life Cycle Assessment
  • 14.2.2 Establishing the Life Cycle Model for Social Assessment
  • 14.2.3 Social Impact Categories
  • 14.2.4 Calculation Method
  • 14.2.5 Contribution Analysis
  • 14.3 Results
  • 14.4 Concluding Discussion and Policy Implications
  • References
  • 15 Spatially Disaggregated Impact Pathway Analysis of Direct Particulate Matter Emissions
  • 15.1 Introduction
  • 15.2 Description of the Method
  • 15.2.1 Emission Scenarios
  • 15.2.2 Air Quality Modeling
  • 15.2.3 Health Impacts and External Costs
  • 15.3 Results
  • 15.3.1 Summary and Conclusions
  • References
  • Part VIConcluding Remarks
  • 16 Summary, Conclusion and Recommendations
  • 16.1 Summary
  • 16.1.1 Electricity Sector
  • 16.1.2 Demand Side Sectors
  • 16.1.3 Environmental Impacts
  • 16.2 Conclusions and Recommendations
  • 16.2.1 Electricity Sector
  • 16.2.2 Industry Sector
  • 16.2.3 Transport Sector
  • 16.2.4 Heating Sector
  • 16.2.5 Environmental, Social Life Cycle and Health Impact Assessment
  • 16.3 Further Aspects and Outlook
  • References.