Memristors for Neuromorphic Circuits and Artificial Intelligence Applications

Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (244 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993548477204498
ctrlnum (CKB)4100000011302231
(oapen)https://directory.doabooks.org/handle/20.500.12854/53144
(EXLCZ)994100000011302231
collection bib_alma
record_format marc
spelling Suñé, Jordi auth
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (244 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.
English
graphene oxide
artificial neural network
simulation
neural networks
STDP
neuromorphics
spiking neural network
artificial intelligence
hierarchical temporal memory
synaptic weight
optimization
transistor-like devices
multiscale modeling
memristor crossbar
spike-timing-dependent plasticity
memristor-CMOS hybrid circuit
pavlov
wire resistance
AI
neocortex
synapse
character recognition
resistive switching
electronic synapses
defect-tolerant spatial pooling
emulator
compact model
deep learning networks
artificial synapse
circuit design
memristors
neuromorphic engineering
memristive devices
OxRAM
neural network hardware
sensory and hippocampal responses
neuromorphic hardware
boost-factor adjustment
RRAM
variability
Flash memories
neuromorphic
reinforcement learning
laser
memristor
hardware-based deep learning ICs
temporal pooling
self-organization maps
crossbar array
pattern recognition
strongly correlated oxides
vertical RRAM
autocovariance
neuromorphic computing
synaptic device
cortical neurons
time series modeling
spiking neural networks
neuromorphic systems
synaptic plasticity
3-03928-576-9
language English
format eBook
author Suñé, Jordi
spellingShingle Suñé, Jordi
Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
author_facet Suñé, Jordi
author_variant j s js
author_sort Suñé, Jordi
title Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_full Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_fullStr Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_full_unstemmed Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_auth Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_new Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
title_sort memristors for neuromorphic circuits and artificial intelligence applications
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (244 p.)
isbn 3-03928-577-7
3-03928-576-9
illustrated Not Illustrated
work_keys_str_mv AT sunejordi memristorsforneuromorphiccircuitsandartificialintelligenceapplications
status_str n
ids_txt_mv (CKB)4100000011302231
(oapen)https://directory.doabooks.org/handle/20.500.12854/53144
(EXLCZ)994100000011302231
carrierType_str_mv cr
is_hierarchy_title Memristors for Neuromorphic Circuits and Artificial Intelligence Applications
_version_ 1796652159309185024
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04288nam-a2200985z--4500</leader><controlfield tag="001">993548477204498</controlfield><controlfield tag="005">20231214132821.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3-03928-577-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4100000011302231</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/53144</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994100000011302231</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Suñé, Jordi</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Memristors for Neuromorphic Circuits and Artificial Intelligence Applications</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (244 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Artificial Intelligence (AI) has found many applications in the past decade due to the ever increasing computing power. Artificial Neural Networks are inspired in the brain structure and consist in the interconnection of artificial neurons through artificial synapses. Training these systems requires huge amounts of data and, after the network is trained, it can recognize unforeseen data and provide useful information. The so-called Spiking Neural Networks behave similarly to how the brain functions and are very energy efficient. Up to this moment, both spiking and conventional neural networks have been implemented in software programs running on conventional computing units. However, this approach requires high computing power, a large physical space and is energy inefficient. Thus, there is an increasing interest in developing AI tools directly implemented in hardware. The first hardware demonstrations have been based on CMOS circuits for neurons and specific communication protocols for synapses. However, to further increase training speed and energy efficiency while decreasing system size, the combination of CMOS neurons with memristor synapses is being explored. The memristor is a resistor with memory which behaves similarly to biological synapses. This book explores the state-of-the-art of neuromorphic circuits implementing neural networks with memristors for AI applications.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">graphene oxide</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">artificial neural network</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">simulation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">STDP</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spiking neural network</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">artificial intelligence</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hierarchical temporal memory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synaptic weight</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">optimization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transistor-like devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multiscale modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">memristor crossbar</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spike-timing-dependent plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">memristor-CMOS hybrid circuit</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pavlov</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">wire resistance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AI</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neocortex</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synapse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">character recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">resistive switching</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electronic synapses</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">defect-tolerant spatial pooling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">emulator</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">compact model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">deep learning networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">artificial synapse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">circuit design</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">memristors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphic engineering</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">memristive devices</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">OxRAM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural network hardware</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sensory and hippocampal responses</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphic hardware</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">boost-factor adjustment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">RRAM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">variability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Flash memories</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">reinforcement learning</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">laser</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">memristor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hardware-based deep learning ICs</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">temporal pooling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">self-organization maps</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">crossbar array</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pattern recognition</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">strongly correlated oxides</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">vertical RRAM</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">autocovariance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphic computing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synaptic device</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cortical neurons</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">time series modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spiking neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neuromorphic systems</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synaptic plasticity</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03928-576-9</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:31:47 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2020-06-20 22:16:43 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338865750004498&amp;Force_direct=true</subfield><subfield code="Z">5338865750004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338865750004498</subfield></datafield></record></collection>