Stem Cell and Biologic Scaffold Engineering

Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (110 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04975nam-a2200901z--4500
001 993548397004498
005 20231214133537.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-498-5 
035 |a (CKB)4100000010106172 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/60016 
035 |a (EXLCZ)994100000010106172 
041 0 |a eng 
100 1 |a Mallis, Panagiotis  |4 auth 
245 1 0 |a Stem Cell and Biologic Scaffold Engineering 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (110 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Tissue engineering and regenerative medicine is a rapidly evolving research field which effectively combines stem cells and biologic scaffolds in order to replace damaged tissues. Biologic scaffolds can be produced through the removal of resident cellular populations using several tissue engineering approaches, such as the decellularization method. Indeed, the decellularization method aims to develop a cell-free biologic scaffold while keeping the extracellular matrix (ECM) intact. Furthermore, biologic scaffolds have been investigated for their in vitro potential for whole organ development. Currently, clinical products composed of decellularized matrices, such as pericardium, urinary bladder, small intestine, heart valves, nerve conduits, trachea, and vessels, are being evaluated for use in human clinical trials. Tissue engineering strategies require the interaction of biologic scaffolds with cellular populations. Among them, stem cells are characterized by unlimited cell division, self-renewal, and differentiation potential, distinguishing themselves as a frontline source for the repopulation of decellularized matrices and scaffolds. Under this scheme, stem cells can be isolated from patients, expanded under good manufacturing practices (GMPs), used for the repopulation of biologic scaffolds and, finally, returned to the patient. The interaction between scaffolds and stem cells is thought to be crucial for their infiltration, adhesion, and differentiation into specific cell types. In addition, biomedical devices such as bioreactors contribute to the uniform repopulation of scaffolds. Until now, remarkable efforts have been made by the scientific society in order to establish the proper repopulation conditions of decellularized matrices and scaffolds. However, parameters such as stem cell number, in vitro cultivation conditions, and specific growth media composition need further evaluation. The ultimate goal is the development of “artificial” tissues similar to native ones, which is achieved by properly combining stem cells and biologic scaffolds and thus bringing them one step closer to personalized medicine. The original research articles and comprehensive reviews in this Special Issue deal with the use of stem cells and biologic scaffolds that utilize state-of-the-art tissue engineering and regenerative medicine approaches. 
546 |a English 
653 |a nerve conduit 
653 |a tissue engineering 
653 |a regenerative medicine 
653 |a mixed lymphocyte reaction 
653 |a histological images 
653 |a future scaffold engineering 
653 |a multiparameter 
653 |a 3DPVS 
653 |a MSCs 
653 |a Wnt signaling 
653 |a Mesenchymal Stromal Cells 
653 |a factorial design 
653 |a novel scaffold 
653 |a Wharton’s Jelly tissue 
653 |a stem cells 
653 |a umbilical arteries 
653 |a SDS 
653 |a platelet rich plasma 
653 |a TGF? signaling 
653 |a traditional scaffold 
653 |a pluripotency and commitment 
653 |a tissue engineered construct 
653 |a HLA-G 
653 |a CHAPS 
653 |a platelets 
653 |a proteomic analysis 
653 |a vibrating nature of universe. 
653 |a VS55 
653 |a cell culture 
653 |a FGF signaling 
653 |a evolution of scaffold 
653 |a dynamicity and dimensionality 
653 |a fibrin gel 
653 |a scaffold classification 
653 |a decellularization 
653 |a vitrification 
653 |a seven-folder logics 
653 |a IIEF-5 questionnaire 
653 |a TGF-?1 
653 |a erectile dysfunction 
653 |a human induced pluripotent stem cells 
653 |a iPSCs 
653 |a scaffolds 
653 |a Barret’s esophagus 
653 |a nerve regeneration 
653 |a long term storage 
653 |a laws of system evolution 
653 |a scaffold categorization 
653 |a platelet lysate 
653 |a 3D scaffold 
653 |a esophagus 
653 |a language of relativity 
653 |a cord blood units 
776 |z 3-03921-497-7 
906 |a BOOK 
ADM |b 2023-12-15 05:57:17 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338781660004498&Force_direct=true  |Z 5338781660004498  |b Available  |8 5338781660004498