Fluid Flow in Fractured Porous Media, / Volume 1

The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (578 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 11497nam-a2203637z--4500
001 993548372704498
005 20231214133109.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-424-1 
035 |a (CKB)4100000010106158 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/47777 
035 |a (EXLCZ)994100000010106158 
041 0 |a eng 
100 1 |a Liu, Richeng  |4 auth 
245 1 0 |a Fluid Flow in Fractured Porous Media,  |n Volume 1 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (578 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The fluid flow in fracture porous media plays a significant role in the assessment of deep underground reservoirs, such as through CO2 sequestration, enhanced oil recovery, and geothermal energy development. Many methods have been employed—from laboratory experimentation to theoretical analysis and numerical simulations—and allowed for many useful conclusions. This Special Issue aims to report on the current advances related to this topic. This collection of 58 papers represents a wide variety of topics, including on granite permeability investigation, grouting, coal mining, roadway, and concrete, to name but a few. We sincerely hope that the papers published in this Special Issue will be an invaluable resource for our readers. 
546 |a English 
653 |a deformation feature 
653 |a minerals 
653 |a microstructure 
653 |a mixing 
653 |a permeability 
653 |a gas concentration 
653 |a water-rock interaction 
653 |a loose gangue backfill material 
653 |a unified pipe-network method 
653 |a fracture 
653 |a roof-cutting resistance 
653 |a crack 
653 |a similar-material 
653 |a movable fluid 
653 |a gob-side entry retaining (GER) 
653 |a rock-soil mechanics 
653 |a bed separation 
653 |a orthogonal tests 
653 |a charge separation 
653 |a water soaked height 
653 |a fluid flow in reclaimed soil 
653 |a laboratory experiment 
653 |a longwall mining 
653 |a grading broken gangue 
653 |a MIP 
653 |a elastic modulus 
653 |a effective stress 
653 |a permeability coefficient 
653 |a mixer 
653 |a naturally fracture 
653 |a SEM 
653 |a microstructure characteristics 
653 |a artificial joint rock 
653 |a fractured rock 
653 |a strata movement 
653 |a conservative solute 
653 |a particle velocity 
653 |a dry-wet cycles 
653 |a hydraulic fractures 
653 |a numerical calculation 
653 |a mechanical behaviors 
653 |a normalized conductivity-influence function 
653 |a fractured porous rock mass 
653 |a PPCZ 
653 |a segmented grouting 
653 |a non-aqueous phase liquid 
653 |a intelligent torque rheometer 
653 |a numerical analysis 
653 |a temperature 
653 |a unsaturated soil 
653 |a uniaxial compressive strength 
653 |a mine shaft 
653 |a coalbed methane (CBM) 
653 |a nonlinear flow in fractured porous media 
653 |a similar simulation 
653 |a forecasting 
653 |a tight sandstones 
653 |a oriented perforation 
653 |a hydro-mechanical coupling 
653 |a constant normal stiffness conditions 
653 |a cohesive soils 
653 |a layered progressive grouting 
653 |a chemical grouts 
653 |a grain size of sand 
653 |a Darcy's law 
653 |a soft coal masses 
653 |a hydro-power 
653 |a cyclic heating and cooling 
653 |a cohesive element method 
653 |a cement-based paste discharge 
653 |a tectonically deformed coal 
653 |a split grouting 
653 |a fault water inrush 
653 |a filtration effects 
653 |a T-stress 
653 |a particle flow modeling 
653 |a new cementitious material 
653 |a strength 
653 |a stabilization 
653 |a fractured porous medium 
653 |a brine concentration 
653 |a initial water contained in sand 
653 |a XRD 
653 |a fracture criteria 
653 |a hydraulic conductivity 
653 |a roadway deformation 
653 |a backfill mining 
653 |a adsorption/desorption properties 
653 |a pore pressure 
653 |a roughness 
653 |a cement-silicate grout 
653 |a compressive stress 
653 |a discrete element method 
653 |a dynamic characteristics 
653 |a strain-based percolation model 
653 |a thermal-hydrological-chemical interactions 
653 |a pore distribution characteristics 
653 |a transversely isotropic rocks 
653 |a nitric acid modification 
653 |a disaster-causing mechanism 
653 |a CH4 seepage 
653 |a crack distribution characteristics 
653 |a micro-CT 
653 |a relief excavation 
653 |a Darcy flow 
653 |a hydraulic fracturing 
653 |a mixed-form formulation 
653 |a propagation 
653 |a scanning electron microscope (SEM) images 
653 |a propagation pattern 
653 |a consolidation process 
653 |a rheological deformation 
653 |a gas adsorption 
653 |a soft filling medium 
653 |a ground pressure 
653 |a orthogonal ratio test 
653 |a rock fracture 
653 |a coal seams 
653 |a high-steep slope 
653 |a interface 
653 |a orthogonal test 
653 |a stress interference 
653 |a physical and mechanical parameters 
653 |a fracture propagation 
653 |a fluid-solid coupling theory 
653 |a coupling model 
653 |a surface characteristics 
653 |a numerical manifold method 
653 |a gas 
653 |a lignite 
653 |a water inrush prevention 
653 |a coupled THM model 
653 |a hard and thick magmatic rocks 
653 |a Ordos Basin 
653 |a porosity 
653 |a damage mechanics 
653 |a seepage 
653 |a degradation mechanism 
653 |a high temperature 
653 |a visualization system 
653 |a bentonite-sand mixtures 
653 |a contamination 
653 |a conductivity-influence function 
653 |a water-rock interaction 
653 |a deterioration 
653 |a seepage pressure 
653 |a glutenite 
653 |a adhesion efficiency 
653 |a mechanical behavior transition 
653 |a bedding plane orientation 
653 |a enhanced gas recovery 
653 |a debris-resisting barriers 
653 |a reinforcement mechanism 
653 |a on-site monitoring 
653 |a geophysical prospecting 
653 |a cyclic wetting-drying 
653 |a scoops3D 
653 |a semi-analytical solution 
653 |a enhanced permeability 
653 |a management period 
653 |a seepage control 
653 |a deformation 
653 |a Yellow River Embankment 
653 |a impeded drainage boundary 
653 |a rheological test 
653 |a circular closed reservoir 
653 |a grout penetration 
653 |a viscoelastic fluid 
653 |a coal-like material 
653 |a paste-like slurry 
653 |a floor failure depth 
653 |a supercritical CO2 
653 |a gravel 
653 |a numerical model 
653 |a fractal 
653 |a gas-bearing coal 
653 |a shear-flow coupled test 
653 |a rheological limit strain 
653 |a CO2 flooding 
653 |a flotation 
653 |a goaf 
653 |a slope stability 
653 |a damage 
653 |a coal and gas outburst 
653 |a hydraulic fracture 
653 |a anisotropy 
653 |a high-order 
653 |a effluents 
653 |a FLAC 
653 |a limestone roof 
653 |a sandstone 
653 |a TG/DTG 
653 |a Xinjiang 
653 |a two-phase flow 
653 |a model experiment 
653 |a coal particle 
653 |a volumetric strain 
653 |a failure mode 
653 |a land reclamation 
653 |a sandstone and mudstone particles 
653 |a contiguous seams 
653 |a CO2 geological storage 
653 |a numerical simulation 
653 |a geogrid 
653 |a stress relief 
653 |a optimum proportioning 
653 |a roadside backfill body (RBB) 
653 |a pervious concrete 
653 |a mudstone 
653 |a hydraulic fracture network 
653 |a grouted sand 
653 |a fractal pore characteristics 
653 |a refraction law 
653 |a segmented rheological model 
653 |a ductile failure 
653 |a heterogeneity 
653 |a flow law 
653 |a fracture closure 
653 |a coal measures sandstone 
653 |a tight sandstone gas reservoirs 
653 |a gob behaviors 
653 |a water-dripping roadway 
653 |a creep characteristics 
653 |a internal erosion 
653 |a warning levels of fault water inrush 
653 |a hydraulic aperture 
653 |a bolt support 
653 |a discontinuous natural fracture 
653 |a microscopic morphology 
653 |a critical hydraulic gradient 
653 |a mixed mode fracture resistance 
653 |a differential settlement 
653 |a alternate strata 
653 |a finite element method 
653 |a crushing ratio 
653 |a chloride 
653 |a glauberite cavern for storing oil &amp 
653 |a macroscopic mechanical behaviors 
653 |a collision angle 
653 |a adsorption performance 
653 |a failure mechanism 
653 |a mechanical properties 
653 |a transmissivity 
653 |a damage evolution 
653 |a gas fracturing 
653 |a multitude parameters 
653 |a deviatoric stress 
653 |a Jiaohe 
653 |a coal 
653 |a soil properties 
653 |a acoustic emission 
653 |a pore structure 
653 |a grouting experiment 
653 |a concrete 
653 |a confining pressures 
653 |a green mining 
653 |a gas drainage 
653 |a fluid viscosity 
653 |a compression deformation 
653 |a Unsaturation 
653 |a adsorption-desorption 
653 |a seepage-creep 
653 |a constitutive model 
653 |a soil particle size 
653 |a Pseudo Steady-State (PPS) constant 
653 |a soil-structure interface 
653 |a debris flow 
653 |a fracture grouting 
653 |a initial settlement position 
653 |a regression equation 
653 |a electrical potential 
653 |a secondary fracture 
653 |a surrounding rock 
653 |a solid backfill coal mining 
653 |a time variation 
653 |a excess pore-pressures 
653 |a finite-conductivity fracture 
653 |a permeability characteristics 
653 |a rainfall-unstable soil coupling mechanism(R-USCM) 
653 |a shaft lining 
776 |z 3-03921-423-3 
700 1 |a Jiang, Yujing  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:42:57 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338794370004498&Force_direct=true  |Z 5338794370004498  |b Available  |8 5338794370004498