Clean Energy and Fuel (Hydrogen) Storage

Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal en...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (278 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04979nam-a2201321z--4500
001 993548283304498
005 20231214133441.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-631-7 
035 |a (CKB)4100000010106192 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/43351 
035 |a (EXLCZ)994100000010106192 
041 0 |a eng 
100 1 |a Srinivasan, Sesha  |4 auth 
245 1 0 |a Clean Energy and Fuel (Hydrogen) Storage 
246 |a Clean Energy and Fuel  
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (278 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Clean energy and fuel storage are often required for both stationary and automotive applications. Some of these clean energy and fuel storage technologies currently under extensive research and development include hydrogen storage, direct electric storage, mechanical energy storage, solar–thermal energy storage, electrochemical (batteries and supercapacitors), and thermochemical storage. The gravimetric and volumetric storage capacity, energy storage density, power output, operating temperature and pressure, cycle life, recyclability, and cost of clean energy or fuel storage are some of the factors that govern efficient energy and fuel storage technologies for potential deployment in energy harvesting (solar and wind farms) stations and onboard vehicular transportation. This Special Issue thus serves the need for promoting exploratory research and development on clean energy and fuel storage technologies while addressing their challenges to practical and sustainable infrastructures. 
546 |a English 
653 |a MgH2 
653 |a vertically oriented graphene 
653 |a gas loss 
653 |a concentrated solar power (CSP) 
653 |a complex hydrides 
653 |a PCM roof 
653 |a hydrogen storage systems 
653 |a slag 
653 |a bubbles transportation 
653 |a dye-sensitized solar cells 
653 |a undercooling 
653 |a methanogenesis 
653 |a electrochemical energy storage 
653 |a hydrogen storage 
653 |a Fischer–Tropsch 
653 |a state of charge estimator 
653 |a gas turbine engine 
653 |a simplified electrochemical model 
653 |a hot summer and cold winter area 
653 |a rock permeability 
653 |a flutter instability 
653 |a charge density 
653 |a binder 
653 |a salt cavern energy storage 
653 |a battery energy storage system 
653 |a capacitance 
653 |a LiNH2 
653 |a ball milling 
653 |a production rate 
653 |a leaching tubing 
653 |a quality function deployment (QFD) 
653 |a nanocatalyst 
653 |a lab-scale 
653 |a thermal energy storage (TES) 
653 |a comprehensive incremental benefit 
653 |a lean direct injection 
653 |a Li-ion batteries 
653 |a separator 
653 |a four-point 
653 |a salt cavern 
653 |a low emissions combustion 
653 |a ionic liquid 
653 |a carbon materials 
653 |a nanocomposite materials 
653 |a electrical double layers 
653 |a recovery factor 
653 |a thermochemical energy storage 
653 |a Klinkenberg method 
653 |a flow-induced vibration 
653 |a cathode 
653 |a porous media 
653 |a metal hydride 
653 |a aquifer size 
653 |a diffusion 
653 |a auxiliary services compensation 
653 |a water invasion 
653 |a conjugate phase change heat transfer 
653 |a heat transfer enhancement 
653 |a failure mode and effect analysis (FMEA) 
653 |a magnetism 
653 |a carbonate gas reservoirs 
653 |a equivalent loss of cycle life 
653 |a internal and reverse external axial flows 
653 |a thermal energy storage 
653 |a lithium-ion batteries 
653 |a bacterial sulfate reduction 
653 |a crystal growth rates 
653 |a optimal capacity 
653 |a gas storage 
653 |a energy discharge 
653 |a anode 
653 |a Ag nanoparticles 
653 |a regenerator 
653 |a hydrogen absorption 
653 |a freestanding TiO2 nanotube arrays 
653 |a material science 
653 |a extended kalman filter 
653 |a reactive transport modeling 
653 |a synthetic rock salt testing 
653 |a hydrogen energy storage 
653 |a lattice Boltzmann method 
653 |a dynamic modeling 
653 |a bubbles burst 
653 |a Power to Liquid 
653 |a large-scale wind farm 
653 |a PHREEQC 
776 |z 3-03921-630-9 
700 1 |a Stefanakos, Elias  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:54:27 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338767570004498&Force_direct=true  |Z 5338767570004498  |b Available  |8 5338767570004498