Autonomous Control of Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, a...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (270 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04383nam-a2200985z--4500
001 993548275804498
005 20240403215449.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-031-9 
035 |a (CKB)4920000000094748 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/41666 
035 |a (EXLCZ)994920000000094748 
041 0 |a eng 
100 1 |a Becerra, Victor  |4 auth 
245 1 0 |a Autonomous Control of Unmanned Aerial Vehicles 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (270 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Open access  |f Unrestricted online access  |2 star 
520 |a Unmanned aerial vehicles (UAVs) are being increasingly used in different applications in both military and civilian domains. These applications include surveillance, reconnaissance, remote sensing, target acquisition, border patrol, infrastructure monitoring, aerial imaging, industrial inspection, and emergency medical aid. Vehicles that can be considered autonomous must be able to make decisions and react to events without direct intervention by humans. Although some UAVs are able to perform increasingly complex autonomous manoeuvres, most UAVs are not fully autonomous; instead, they are mostly operated remotely by humans. To make UAVs fully autonomous, many technological and algorithmic developments are still required. For instance, UAVs will need to improve their sensing of obstacles and subsequent avoidance. This becomes particularly important as autonomous UAVs start to operate in civilian airspaces that are occupied by other aircraft. The aim of this volume is to bring together the work of leading researchers and practitioners in the field of unmanned aerial vehicles with a common interest in their autonomy. The contributions that are part of this volume present key challenges associated with the autonomous control of unmanned aerial vehicles, and propose solution methodologies to address such challenges, analyse the proposed methodologies, and evaluate their performance. 
546 |a English 
653 |a super twisting sliding mode controller (STSMC) 
653 |a monocular visual SLAM 
653 |a modulation 
653 |a bio-inspiration 
653 |a simulation 
653 |a horizontal control 
653 |a sensor fusion 
653 |a ADRC 
653 |a high-order sliding mode 
653 |a over-the-horizon air confrontation 
653 |a longitudinal motion model 
653 |a autonomous control 
653 |a real-time ground vehicle detection 
653 |a maneuver decision 
653 |a nonlinear dynamics 
653 |a UAV automatic landing 
653 |a harmonic extended state observer 
653 |a image processing 
653 |a General Visual Inspection 
653 |a actuator faults 
653 |a actuator fault 
653 |a remote sensing 
653 |a aerial infrared imagery 
653 |a agricultural UAV 
653 |a SC-FDM 
653 |a tilt rotors 
653 |a mass eccentricity 
653 |a wind disturbance 
653 |a decoupling algorithm 
653 |a adaptive discrete mesh 
653 |a disturbance 
653 |a super twisting extended state observer (STESO) 
653 |a heuristic exploration 
653 |a sliding mode control 
653 |a UAS 
653 |a Q-Network 
653 |a UAV communication system 
653 |a UAV 
653 |a reinforcement learning 
653 |a autonomous landing area selection 
653 |a peak-to-average power ratio (PAPR) 
653 |a slung load 
653 |a aircraft maintenance 
653 |a flight mechanics 
653 |a octree 
653 |a unmanned aerial vehicle 
653 |a convolutional neural network 
653 |a aircraft 
653 |a performance evaluation 
653 |a quadrotor 
653 |a vertical take off 
653 |a data link 
653 |a path planning 
653 |a coaxial-rotor 
653 |a fixed-time extended state observer (FTESO) 
653 |a multi-UAV system 
653 |a hardware-in-the-loop 
653 |a distributed swarm control 
653 |a vertical control 
776 |z 3-03921-030-0 
906 |a BOOK 
ADM |b 2024-04-04 08:15:00 Europe/Vienna  |f system  |c marc21  |a 2019-11-10 04:18:40 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338805280004498&Force_direct=true  |Z 5338805280004498  |b Available  |8 5338805280004498