First-Principles Prediction of Structures and Properties in Crystals

The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approa...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (128 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03335nam-a2200733z--4500
001 993548259104498
005 20231214133347.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-671-6 
035 |a (CKB)4100000010106215 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/47707 
035 |a (EXLCZ)994100000010106215 
041 0 |a eng 
100 1 |a Kurzydlowski, Dominik  |4 auth 
245 1 0 |a First-Principles Prediction of Structures and Properties in Crystals 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (128 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The term “first-principles calculations” is a synonym for the numerical determination of the electronic structure of atoms, molecules, clusters, or materials from ‘first principles’, i.e., without any approximations to the underlying quantum-mechanical equations. Although numerous approximate approaches have been developed for small molecular systems since the late 1920s, it was not until the advent of the density functional theory (DFT) in the 1960s that accurate “first-principles” calculations could be conducted for crystalline materials. The rapid development of this method over the past two decades allowed it to evolve from an explanatory to a truly predictive tool. Yet, challenges remain: complex chemical compositions, variable external conditions (such as pressure), defects, or properties that rely on collective excitations—all represent computational and/or methodological bottlenecks. This Special Issue comprises a collection of papers that use DFT to tackle some of these challenges and thus highlight what can (and cannot yet) be achieved using first-principles calculations of crystals. 
546 |a English 
653 |a ab initio 
653 |a magnetic Lennard-Jones 
653 |a superconductivity 
653 |a global optimisation 
653 |a electrical engineering 
653 |a first-principles 
653 |a semiconductors 
653 |a refractory metals 
653 |a genetic algorithm 
653 |a DFT 
653 |a crystal structure prediction 
653 |a electronic structure 
653 |a indium arsenide 
653 |a van der Waals corrections 
653 |a charged defects 
653 |a Ir-based intermetallics 
653 |a point defects 
653 |a electronic properties 
653 |a learning algorithms 
653 |a half-Heusler alloy 
653 |a molecular crystals 
653 |a chlorine 
653 |a optical properties 
653 |a ab initio calculations 
653 |a magnetic properties 
653 |a structure prediction 
653 |a thermoelectricity 
653 |a high-pressure 
653 |a density functional theory 
653 |a magnetic materials 
653 |a structural fingerprint 
653 |a crystal structure 
653 |a semihard materials 
653 |a silver 
653 |a formation energy 
653 |a Heusler alloy 
653 |a battery materials 
653 |a elastic properties 
776 |z 3-03921-670-8 
700 1 |a Hermann, Andreas  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:51:27 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338800280004498&Force_direct=true  |Z 5338800280004498  |b Available  |8 5338800280004498