Methods and Concepts for Designing and Validating Smart Grid Systems

Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible load...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2019
Language:English
Physical Description:1 electronic resource (408 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 07370nam-a2201681z--4500
001 993548171804498
005 20231214133158.0
006 m o d
007 cr|mn|---annan
008 202102s2019 xx |||||o ||| 0|eng d
020 |a 3-03921-649-X 
035 |a (CKB)4100000010106285 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/53320 
035 |a (EXLCZ)994100000010106285 
041 0 |a eng 
100 1 |a Burt, Graeme  |4 auth 
245 1 0 |a Methods and Concepts for Designing and Validating Smart Grid Systems 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2019 
300 |a 1 electronic resource (408 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Energy efficiency and low-carbon technologies are key contributors to curtailing the emission of greenhouse gases that continue to cause global warming. The efforts to reduce greenhouse gas emissions also strongly affect electrical power systems. Renewable sources, storage systems, and flexible loads provide new system controls, but power system operators and utilities have to deal with their fluctuating nature, limited storage capabilities, and typically higher infrastructure complexity with a growing number of heterogeneous components. In addition to the technological change of new components, the liberalization of energy markets and new regulatory rules bring contextual change that necessitates the restructuring of the design and operation of future energy systems. Sophisticated component design methods, intelligent information and communication architectures, automation and control concepts, new and advanced markets, as well as proper standards are necessary in order to manage the higher complexity of such intelligent power systems that form smart grids. Due to the considerably higher complexity of such cyber-physical energy systems, constituting the power system, automation, protection, information and communication technology (ICT), and system services, it is expected that the design and validation of smart-grid configurations will play a major role in future technology and system developments. However, an integrated approach for the design and evaluation of smart-grid configurations incorporating these diverse constituent parts remains evasive. The currently available validation approaches focus mainly on component-oriented methods. In order to guarantee a sustainable, affordable, and secure supply of electricity through the transition to a future smart grid with considerably higher complexity and innovation, new design, validation, and testing methods appropriate for cyber-physical systems are required. Therefore, this book summarizes recent research results and developments related to the design and validation of smart grid systems. 
546 |a English 
653 |a web of cells 
653 |a IHE 
653 |a distribution grid 
653 |a accuracy 
653 |a use cases 
653 |a Development 
653 |a synchrophasors 
653 |a underground cabling 
653 |a solar photovoltaics (PV) 
653 |a laboratory testbed 
653 |a conceptual structuration 
653 |a Quasi-Dynamic Power-Hardware-in-the-Loop 
653 |a coupling method 
653 |a time synchronization 
653 |a smart energy systems 
653 |a substation automation system (SAS) 
653 |a testing 
653 |a investment 
653 |a time delay 
653 |a interface algorithm (IA) 
653 |a PHIL (power hardware in the loop) 
653 |a network outage 
653 |a operational range of PHIL 
653 |a wind power 
653 |a elastic demand bids 
653 |a Model-Based Software Engineering 
653 |a Enterprise Architecture Management 
653 |a plug-in electric vehicle 
653 |a Smart Grid Architecture Model 
653 |a linear/switching amplifier 
653 |a pricing scheme 
653 |a average consensus 
653 |a traffic reduction technique 
653 |a cell 
653 |a gazelle 
653 |a smart grids control strategies 
653 |a real-time simulation and hardware-in-the-loop experiments 
653 |a 4G Long Term Evolution—LTE 
653 |a power loss allocation 
653 |a cyber-physical energy system 
653 |a experimentation 
653 |a microgrid 
653 |a resilience 
653 |a integration profiles 
653 |a remuneration scheme 
653 |a renewable energy sources 
653 |a shiftable loads 
653 |a droop control 
653 |a Power-Hardware-in-the-Loop 
653 |a peer-to-peer 
653 |a validation techniques for innovative smart grid solutions 
653 |a frequency containment control (FCC) 
653 |a synchronous power system 
653 |a power frequency characteristic 
653 |a development and implementation methods for smart grid technologies 
653 |a cascading procurement 
653 |a IEC 62559 
653 |a device-to-device communication 
653 |a DC link 
653 |a validation and testing 
653 |a information and communication technology 
653 |a TOGAF 
653 |a battery energy storage system (BESS) 
653 |a active distribution network 
653 |a stability 
653 |a Validation 
653 |a synchronized measurements 
653 |a Architecture 
653 |a locational marginal prices 
653 |a SGAM 
653 |a network reconfiguration 
653 |a interoperability 
653 |a seamless communications 
653 |a fault management 
653 |a real-time simulation 
653 |a System-of-Systems 
653 |a market design elements 
653 |a micro combined heat and power (micro-CHP) 
653 |a co-simulation-based assessment methods 
653 |a islanded operation 
653 |a connectathon 
653 |a Software-in-the-Loop 
653 |a voltage control 
653 |a electricity distribution 
653 |a distribution phasor measurement units 
653 |a centralised control 
653 |a data mining 
653 |a robust optimization 
653 |a modelling and simulation of smart grid systems 
653 |a hardware-in-the-Loop 
653 |a smart grids 
653 |a cyber physical co-simulation 
653 |a design 
653 |a decentralised energy system 
653 |a procurement scheme 
653 |a Smart Grid 
653 |a smart grid 
653 |a distributed control 
653 |a fuzzy logic 
653 |a Power Hardware-in-the-Loop (PHIL) 
653 |a simulation initialization 
653 |a multi-agent system 
653 |a adaptive control 
653 |a real-time balancing market 
653 |a co-simulation 
653 |a optimal reserve allocation 
653 |a Web-of-Cells 
653 |a Hardware-in-the-Loop 
653 |a micro-synchrophasors 
653 |a linear decision rules 
653 |a synchronization 
653 |a hardware-in-the-loop 
653 |a PMU 
653 |a high-availability seamless redundancy (HSR) 
653 |a market design 
653 |a demand response 
776 |z 3-03921-648-1 
700 1 |a Rohjans, Sebastian  |4 auth 
700 1 |a Strasser, Thomas  |4 auth 
906 |a BOOK 
ADM |b 2023-12-15 05:45:53 Europe/Vienna  |f system  |c marc21  |a 2020-02-01 22:26:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338744130004498&Force_direct=true  |Z 5338744130004498  |b Available  |8 5338744130004498