Development of Unconventional Reservoirs

The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional...

Full description

Saved in:
Bibliographic Details
:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (522 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 06098nam-a2201801z--4500
001 993548139604498
005 20231214132841.0
006 m o d
007 cr|mn|---annan
008 202102s2020 xx |||||o ||| 0|eng d
020 |a 3-03928-581-5 
035 |a (CKB)4100000011302255 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/44954 
035 |a (EXLCZ)994100000011302255 
041 0 |a eng 
100 1 |a Rezaee, Reza  |4 auth 
245 1 0 |a Development of Unconventional Reservoirs 
260 |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (522 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The need for energy is increasing and but the production from conventional reservoirs is declining quickly. This requires an economically and technically feasible source of energy for the coming years. Among some alternative future energy solutions, the most reasonable source is from unconventional reservoirs. As the name “unconventional” implies, different and challenging approaches are required to characterize and develop these resources. This Special Issue covers some of the technical challenges for developing unconventional energy sources from shale gas/oil, tight gas sand, and coalbed methane. 
546 |a English 
653 |a horizontal well 
653 |a shale gas 
653 |a shock loads 
653 |a pseudo-steady-state non-equilibrium sorption 
653 |a unsteady state non-equilibrium sorption 
653 |a porosity–permeability 
653 |a fractured-vuggy reservoirs 
653 |a flow channel 
653 |a pressure derivative 
653 |a total organic carbon (TOC) 
653 |a CO2 huff-n-puff 
653 |a flow behavior 
653 |a unconventional reservoirs 
653 |a semi-analytical model 
653 |a gravel pack 
653 |a optimization measures 
653 |a fractures 
653 |a lab tests under reservoir condition 
653 |a dual-porosity system 
653 |a unconventional 
653 |a gravity differentiation 
653 |a MICP 
653 |a perforation safety 
653 |a fracture penetration extent 
653 |a organic-rich shale 
653 |a stress-dependent permeability 
653 |a equilibrium sorption 
653 |a helium porosimetry 
653 |a numerical model 
653 |a original gas in-place 
653 |a shale alteration 
653 |a injection and production pattern 
653 |a adsorption and desorption isotherms 
653 |a low-pressure gas adsorption 
653 |a initial water saturation 
653 |a drilling fluid 
653 |a sorption hysteresis 
653 |a coalbed methane 
653 |a gas content 
653 |a capillary number 
653 |a reorientation fractures 
653 |a water flooding effect 
653 |a organic pores 
653 |a tight reservoir 
653 |a condensate recovery 
653 |a Langmuir pressure 
653 |a Klinkenberg slippage theory 
653 |a limestone and calcareous mudstone interbedding 
653 |a petrophysics 
653 |a tight gas sand 
653 |a numerical analysis 
653 |a northern Guizhou 
653 |a wettability 
653 |a peak pressure 
653 |a sand control 
653 |a water imbibition 
653 |a clay bound water 
653 |a carbon dioxide sequestration 
653 |a adsorption capacity 
653 |a gas compressibility factors 
653 |a convolutional neural network 
653 |a multi-stage fracturing horizontal wells 
653 |a fractured tight reservoir 
653 |a physical model 
653 |a tight gas reservoirs 
653 |a automatic classification 
653 |a NMR 
653 |a catalytic oxidation characteristics 
653 |a micro-CT image 
653 |a wellbore stability 
653 |a gas adsorption and desorption 
653 |a gas shale 
653 |a medium volatile bituminous coal 
653 |a hydraulic flow units 
653 |a GEM® 
653 |a petrophysical properties 
653 |a compositional 3D 
653 |a rock-water-CO2 interaction 
653 |a source-mixed gas 
653 |a residual gas distribution 
653 |a oxidation reaction pathway 
653 |a coal rank 
653 |a oil migration 
653 |a clay content 
653 |a perforated string 
653 |a TOC recovery 
653 |a Computer Modelling Group (CMG) 
653 |a capillary trapping 
653 |a pore size distribution 
653 |a adsorption 
653 |a tight reservoirs 
653 |a well interference 
653 |a gradation optimization 
653 |a shale gas condensate reservoir 
653 |a Niutitang formation 
653 |a pulse decay test 
653 |a well testing 
653 |a Langmuir model 
653 |a methane adsorption capacity 
653 |a pore structure 
653 |a and tight sand gas) 
653 |a ultra-deep well 
653 |a deepwater well 
653 |a orthogonal test 
653 |a high pressure and low flowrate 
653 |a theoretical model 
653 |a safety analysis 
653 |a transient pressure 
653 |a catalyst-activated low temperature oxidation 
653 |a reservoir simulation 
653 |a Langmuir volume 
653 |a air flooding 
653 |a petrography 
653 |a total organic carbon 
653 |a electrical resistivity 
653 |a diffusion coefficient 
653 |a equation of state 
653 |a porosity 
653 |a zeta potential 
653 |a gas permeability measurement 
653 |a co-exploitation 
653 |a nuclear magnetic resonance 
653 |a Changqing tight oil 
653 |a visual experiment 
653 |a tight oil reservoirs 
653 |a caprock integrity 
653 |a coal measure gases (coalbed gas 
653 |a NIST-Refprop 
776 |z 3-03928-580-7 
906 |a BOOK 
ADM |b 2023-12-15 05:33:54 Europe/Vienna  |f system  |c marc21  |a 2020-06-20 22:16:43 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338764440004498&Force_direct=true  |Z 5338764440004498  |b Available  |8 5338764440004498