The Role of Glia in Plasticity and Behavior

Glial cells are no longer considered passive bystanders in neuronal brain circuits. Not only are they required for housekeeping and brain metabolism, they are active participants in regulating the physiological function and plasticity of brain circuits and the online control of behavior both in inve...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2015
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (104 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993547668304498
ctrlnum (CKB)3710000000631102
(oapen)https://directory.doabooks.org/handle/20.500.12854/58581
(EXLCZ)993710000000631102
collection bib_alma
record_format marc
spelling Tycho Hoogland auth
The Role of Glia in Plasticity and Behavior
Frontiers Media SA 2015
1 electronic resource (104 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
Glial cells are no longer considered passive bystanders in neuronal brain circuits. Not only are they required for housekeeping and brain metabolism, they are active participants in regulating the physiological function and plasticity of brain circuits and the online control of behavior both in invertebrate and vertebrate model systems. In invertebrates, glial cells are essential for normal function of sensory organs (C. elegans) and necessary for the circadian regulation of locomotor activity (D. melanogaster). In the mamallian brain, astrocytes are implicated in the regulation of cortical brain rhythms and sleep homeostasis. Disruption of AMPA receptor function in a subset of glial cell types in mice shows behavioral deficits. Furthermore, genetic disruption of glial cell function can directly control behavioral output. Regulation of ionic gradients by glia can underlie bistability of neurons and can modulate the fidelity of synaptic transmission. Grafting of human glial progenitor cells in mouse forebrain results in human glial chimeric mice with enhanced plasticity and improved behavioral performance, suggesting that astrocytes have evolved to cope with information processing in more complex brains. Taken together, current evidence is strongly suggestive that glial cells are essential contributors to information processing in the brain. This Research Topic compiles recent research that shows how the molecular mechanisms underlying glial cell function can be dissected, reviews their impact on plasticity and behavior across species and presents novel approaches to further probe their function.
English
Cerebellum
C. elegans
Astrocytes
DREADD
Cortex
plasticity
Gq
Behavior
glia
Hippocampus
2-88919-690-9
Parpura, Vladimir, 1964- auth
language English
format eBook
author Tycho Hoogland
spellingShingle Tycho Hoogland
The Role of Glia in Plasticity and Behavior
Frontiers Research Topics
author_facet Tycho Hoogland
Parpura, Vladimir, 1964-
author_variant t h th
author2 Parpura, Vladimir, 1964-
author2_variant v p vp
author_sort Tycho Hoogland
title The Role of Glia in Plasticity and Behavior
title_full The Role of Glia in Plasticity and Behavior
title_fullStr The Role of Glia in Plasticity and Behavior
title_full_unstemmed The Role of Glia in Plasticity and Behavior
title_auth The Role of Glia in Plasticity and Behavior
title_new The Role of Glia in Plasticity and Behavior
title_sort the role of glia in plasticity and behavior
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2015
physical 1 electronic resource (104 p.)
isbn 2-88919-690-9
illustrated Not Illustrated
work_keys_str_mv AT tychohoogland theroleofgliainplasticityandbehavior
AT parpuravladimir theroleofgliainplasticityandbehavior
status_str n
ids_txt_mv (CKB)3710000000631102
(oapen)https://directory.doabooks.org/handle/20.500.12854/58581
(EXLCZ)993710000000631102
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title The Role of Glia in Plasticity and Behavior
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
_version_ 1796648777795239937
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02695nam-a2200397z--4500</leader><controlfield tag="001">993547668304498</controlfield><controlfield tag="005">20231214133720.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2015 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000000631102</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/58581</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000000631102</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tycho Hoogland</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Role of Glia in Plasticity and Behavior</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (104 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Glial cells are no longer considered passive bystanders in neuronal brain circuits. Not only are they required for housekeeping and brain metabolism, they are active participants in regulating the physiological function and plasticity of brain circuits and the online control of behavior both in invertebrate and vertebrate model systems. In invertebrates, glial cells are essential for normal function of sensory organs (C. elegans) and necessary for the circadian regulation of locomotor activity (D. melanogaster). In the mamallian brain, astrocytes are implicated in the regulation of cortical brain rhythms and sleep homeostasis. Disruption of AMPA receptor function in a subset of glial cell types in mice shows behavioral deficits. Furthermore, genetic disruption of glial cell function can directly control behavioral output. Regulation of ionic gradients by glia can underlie bistability of neurons and can modulate the fidelity of synaptic transmission. Grafting of human glial progenitor cells in mouse forebrain results in human glial chimeric mice with enhanced plasticity and improved behavioral performance, suggesting that astrocytes have evolved to cope with information processing in more complex brains. Taken together, current evidence is strongly suggestive that glial cells are essential contributors to information processing in the brain. This Research Topic compiles recent research that shows how the molecular mechanisms underlying glial cell function can be dissected, reviews their impact on plasticity and behavior across species and presents novel approaches to further probe their function.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cerebellum</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">C. elegans</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Astrocytes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DREADD</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Cortex</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Gq</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Behavior</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">glia</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Hippocampus</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88919-690-9</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Parpura, Vladimir,</subfield><subfield code="d">1964-</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 06:02:59 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2016-04-12 04:07:06 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338613080004498&amp;Force_direct=true</subfield><subfield code="Z">5338613080004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338613080004498</subfield></datafield></record></collection>