Neural masses and fields : modelling the dynamics of brain activity / / topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.

Biophysical modelling of brain activity has had a long and illustrious history and has during the last few years profited from technological advances that allow obtaining neuroimaging data at an unprecedented spatiotemporal resolution. It is a very active area of research with applications ranging f...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
TeilnehmendeR:
Place / Publishing House:France : : Frontiers Media SA,, 2013
Year of Publication:2015
2013
Language:English
Series:Frontiers Research Topics.
Physical Description:1 online resource (237 pages) :; illustrations (colour); digital file(s).
Notes:Bibliographic Level Mode of Issuance: Monograph
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993547536904498
ctrlnum (CKB)3710000000569677
(SSID)ssj0001683359
(PQKBManifestationID)16509212
(PQKBTitleCode)TC0001683359
(PQKBWorkID)15038008
(PQKB)11605887
(WaSeSS)IndRDA00056631
(oapen)https://directory.doabooks.org/handle/20.500.12854/54476
(EXLCZ)993710000000569677
collection bib_alma
record_format marc
spelling Dimitris Pinotsis auth
Neural masses and fields : modelling the dynamics of brain activity / topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.
Frontiers Media SA 2015
France : Frontiers Media SA, 2013
1 online resource (237 pages) : illustrations (colour); digital file(s).
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
text file rda
Frontiers Research Topics
Bibliographic Level Mode of Issuance: Monograph
English
Includes bibliographical references.
Biophysical modelling of brain activity has had a long and illustrious history and has during the last few years profited from technological advances that allow obtaining neuroimaging data at an unprecedented spatiotemporal resolution. It is a very active area of research with applications ranging from the characterization of neurobiological and cognitive processes to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. The relevant community has always benefited from interdisciplinary interactions between different and seemingly distant fields ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions and we welcome all works related or that can contribute to an understanding of and construction of models for neural activity. The focus will be on biophysical models describing brain activity usually measured by fMRI or electrophysiology. Such models can be divided into two large classes: neural mass and neural field models. The main difference between these two classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models which characterize the evolution of this quantity over time only and assume that all neurons of a population are located at (approximately) the same point. This Research Topic will focus on both classes of such models and discuss several of their aspects and relative merits focusing on the main ideas of neural field and mass theories that span from synapses to the whole brain, comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity, evoked responses, seizures, and fitting to data to infer brain states and map physiological parameters. We welcome submissions shedding light on the underlying dynamics within the neural tissue that can yield explanations of disorders such as epilepsy and migraine as well as normal functions such as attention, working memory and decision making and encourage papers reporting new theoretical and/or modelling work as well as advances in experimental methods that can benefit modelling endeavours. The aim of this Research Topic is to provide a forum for state-of-the-art research in the field and foster new theoretical advances.
Calculus HILCC
Mathematics HILCC
Physical Sciences & Mathematics HILCC
neural disorders
self-organization
Electroencephalogram
neural networks
Electrophysiology
Integro-differential equations
neural field theory
neural masses
oscillations
anaesthesia
Pinotsis, Dimitris editor.
Beim Graben, P editor.
Robinson, Peter editor.
Frontiers Research Topics.
language English
format eBook
author Dimitris Pinotsis
spellingShingle Dimitris Pinotsis
Neural masses and fields : modelling the dynamics of brain activity /
Frontiers Research Topics
author_facet Dimitris Pinotsis
Pinotsis, Dimitris
Beim Graben, P
Robinson, Peter
author_variant d p dp
author2 Pinotsis, Dimitris
Beim Graben, P
Robinson, Peter
author2_variant d p dp
g p b gp gpb
p r pr
author2_role TeilnehmendeR
TeilnehmendeR
TeilnehmendeR
author_sort Dimitris Pinotsis
title Neural masses and fields : modelling the dynamics of brain activity /
title_full Neural masses and fields : modelling the dynamics of brain activity / topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.
title_fullStr Neural masses and fields : modelling the dynamics of brain activity / topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.
title_full_unstemmed Neural masses and fields : modelling the dynamics of brain activity / topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.
title_auth Neural masses and fields : modelling the dynamics of brain activity /
title_new Neural masses and fields : modelling the dynamics of brain activity /
title_sort neural masses and fields : modelling the dynamics of brain activity /
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
Frontiers Media SA,
publishDate 2015
2013
physical 1 online resource (237 pages) : illustrations (colour); digital file(s).
isbn 9782889194278
callnumber-first Q - Science
callnumber-subject QA - Mathematics
callnumber-label QA371
callnumber-sort QA 3371
illustrated Not Illustrated
work_keys_str_mv AT dimitrispinotsis neuralmassesandfieldsmodellingthedynamicsofbrainactivity
AT pinotsisdimitris neuralmassesandfieldsmodellingthedynamicsofbrainactivity
AT beimgrabenp neuralmassesandfieldsmodellingthedynamicsofbrainactivity
AT robinsonpeter neuralmassesandfieldsmodellingthedynamicsofbrainactivity
status_str n
ids_txt_mv (CKB)3710000000569677
(SSID)ssj0001683359
(PQKBManifestationID)16509212
(PQKBTitleCode)TC0001683359
(PQKBWorkID)15038008
(PQKB)11605887
(WaSeSS)IndRDA00056631
(oapen)https://directory.doabooks.org/handle/20.500.12854/54476
(EXLCZ)993710000000569677
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title Neural masses and fields : modelling the dynamics of brain activity /
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1796651906312962048
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04447nam a2200601 i 4500</leader><controlfield tag="001">993547536904498</controlfield><controlfield tag="005">20230621141047.0</controlfield><controlfield tag="006">m o u </controlfield><controlfield tag="007">cr#||#||||||||</controlfield><controlfield tag="008">160829s2013 fr ob 000 | eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9782889194278</subfield><subfield code="q">(ebook)</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3710000000569677</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(SSID)ssj0001683359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PQKBManifestationID)16509212</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PQKBTitleCode)TC0001683359</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PQKBWorkID)15038008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(PQKB)11605887</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(WaSeSS)IndRDA00056631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/54476</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993710000000569677</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">PQKB</subfield><subfield code="b">eng</subfield><subfield code="d">UkMaJRU</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1=" " ind2="4"><subfield code="a">QA371</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dimitris Pinotsis</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Neural masses and fields : modelling the dynamics of brain activity /</subfield><subfield code="c">topic editors: Dimitris Pinotsis, Peter Robinson, Peter beim Graben and Karl Friston.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2015</subfield></datafield><datafield tag="264" ind1="3" ind2="1"><subfield code="a">France :</subfield><subfield code="b">Frontiers Media SA,</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (237 pages) :</subfield><subfield code="b">illustrations (colour); digital file(s).</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="347" ind1=" " ind2=" "><subfield code="a">text file</subfield><subfield code="2">rda</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Bibliographic Level Mode of Issuance: Monograph</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="504" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Biophysical modelling of brain activity has had a long and illustrious history and has during the last few years profited from technological advances that allow obtaining neuroimaging data at an unprecedented spatiotemporal resolution. It is a very active area of research with applications ranging from the characterization of neurobiological and cognitive processes to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. The relevant community has always benefited from interdisciplinary interactions between different and seemingly distant fields ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions and we welcome all works related or that can contribute to an understanding of and construction of models for neural activity. The focus will be on biophysical models describing brain activity usually measured by fMRI or electrophysiology. Such models can be divided into two large classes: neural mass and neural field models. The main difference between these two classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models which characterize the evolution of this quantity over time only and assume that all neurons of a population are located at (approximately) the same point. This Research Topic will focus on both classes of such models and discuss several of their aspects and relative merits focusing on the main ideas of neural field and mass theories that span from synapses to the whole brain, comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity, evoked responses, seizures, and fitting to data to infer brain states and map physiological parameters. We welcome submissions shedding light on the underlying dynamics within the neural tissue that can yield explanations of disorders such as epilepsy and migraine as well as normal functions such as attention, working memory and decision making and encourage papers reporting new theoretical and/or modelling work as well as advances in experimental methods that can benefit modelling endeavours. The aim of this Research Topic is to provide a forum for state-of-the-art research in the field and foster new theoretical advances.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Calculus</subfield><subfield code="2">HILCC</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematics</subfield><subfield code="2">HILCC</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Physical Sciences &amp; Mathematics</subfield><subfield code="2">HILCC</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural disorders</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">self-organization</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electroencephalogram</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural networks</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Electrophysiology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integro-differential equations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural field theory</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neural masses</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">oscillations</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">anaesthesia</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pinotsis, Dimitris</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Beim Graben, P</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Robinson, Peter</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Frontiers Research Topics.</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-06-25 14:22:20 Europe/Vienna</subfield><subfield code="d">00</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2016-01-23 20:51:17 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338583660004498&amp;Force_direct=true</subfield><subfield code="Z">5338583660004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338583660004498</subfield></datafield></record></collection>