LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria

The most common quorum sensing (QS) system in Gram-negative bacteria occurs via N-acyl homoserine lactone (AHLs) signals. An archetypical system consists of a LuxI-family protein synthesizing the AHL signal which binds at quorum concentrations to the cognate LuxR-family transcription factors which t...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (122 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546813404498
ctrlnum (CKB)3800000000216249
(oapen)https://directory.doabooks.org/handle/20.500.12854/52069
(EXLCZ)993800000000216249
collection bib_alma
record_format marc
spelling Vittorio Venturi auth
LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
Frontiers Media SA 2016
1 electronic resource (122 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
The most common quorum sensing (QS) system in Gram-negative bacteria occurs via N-acyl homoserine lactone (AHLs) signals. An archetypical system consists of a LuxI-family protein synthesizing the AHL signal which binds at quorum concentrations to the cognate LuxR-family transcription factors which then control gene expression by binding to specific sequences in target gene promoters. QS LuxR-family proteins are approximately 250 amino acids long and made up of two domains; at the N-terminus there is an autoinducer-binding domain whereas the C-terminus contains a DNA-binding helix-turn-helix (HTH) domain. QS LuxRs display surprisingly low similarities (18-25%) even if they respond to structurally similar AHLs. 95% of LuxRs share 9 highly conserved amino acid residues; six of these are hydrophobic or aromatic and form the cavity of the AHL-binding domain and the remaining three are in the HTH domain. With only very few exceptions, the luxI/R cognate genes of AHL QS systems are located adjacent to each other. The sequencing of many bacterial genomes has revealed that many proteobacteria also possess LuxRs that do not have a cognate LuxI protein associated with them. These LuxRs have been called orphans and more recently solos. LuxR solos are widespread in proteobacterial species that possess a canonical complete AHL QS system as well as in species that do not. In many cases more than one LuxR solo is present in a bacterial genome. Scientists are beginning to investigate these solos. Are solos responding to AHL signals? If present in a bacterium which possesses a canonical AHL QS system are solos an integral part of the regulatory circuit? Are LuxR solos eavesdropping on AHLs produced by neighboring bacteria? Have they evolved to respond to different signals instead of AHLs, and are these signals endogenously produced or exogenously provided? Are they involved in interkingdom signaling by responding to eukaryotic signals? Recent studies have revealed that LuxR solos are involved in several mechanisms of cell-cell communication in bacteria implicating them in bacterial intraspecies and interspecies communication as well as in interkingdom signaling by responding to molecules produced by eukaryotes. LuxR solos are likely to become major players in signaling since they are widespread among proteobacterial genomes and because initial studies highlight their different roles in bacterial communication. This Research Topic allows scientists studying or interested in LuxR solos to report their data and/or express their hypotheses and thoughts on this important and currently understudied family of signaling proteins.
English
LuxR solos
Quorum Sensing
signaling
AHL
Bacteria
2-88919-917-7
Brian M.M. Ahmer auth
language English
format eBook
author Vittorio Venturi
spellingShingle Vittorio Venturi
LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
Frontiers Research Topics
author_facet Vittorio Venturi
Brian M.M. Ahmer
author_variant v v vv
author2 Brian M.M. Ahmer
author2_variant b m a bma
author_sort Vittorio Venturi
title LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_full LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_fullStr LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_full_unstemmed LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_auth LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_new LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
title_sort luxr solos are becoming major players in cell-cell communication in bacteria
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2016
physical 1 electronic resource (122 p.)
isbn 2-88919-917-7
illustrated Not Illustrated
work_keys_str_mv AT vittorioventuri luxrsolosarebecomingmajorplayersincellcellcommunicationinbacteria
AT brianmmahmer luxrsolosarebecomingmajorplayersincellcellcommunicationinbacteria
status_str n
ids_txt_mv (CKB)3800000000216249
(oapen)https://directory.doabooks.org/handle/20.500.12854/52069
(EXLCZ)993800000000216249
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
_version_ 1787551980288212995
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03632nam-a2200337z--4500</leader><controlfield tag="001">993546813404498</controlfield><controlfield tag="005">20231214133332.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2016 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3800000000216249</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/52069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993800000000216249</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vittorio Venturi</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">LuxR Solos are Becoming Major Players in Cell-Cell Communication in Bacteria</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2016</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (122 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The most common quorum sensing (QS) system in Gram-negative bacteria occurs via N-acyl homoserine lactone (AHLs) signals. An archetypical system consists of a LuxI-family protein synthesizing the AHL signal which binds at quorum concentrations to the cognate LuxR-family transcription factors which then control gene expression by binding to specific sequences in target gene promoters. QS LuxR-family proteins are approximately 250 amino acids long and made up of two domains; at the N-terminus there is an autoinducer-binding domain whereas the C-terminus contains a DNA-binding helix-turn-helix (HTH) domain. QS LuxRs display surprisingly low similarities (18-25%) even if they respond to structurally similar AHLs. 95% of LuxRs share 9 highly conserved amino acid residues; six of these are hydrophobic or aromatic and form the cavity of the AHL-binding domain and the remaining three are in the HTH domain. With only very few exceptions, the luxI/R cognate genes of AHL QS systems are located adjacent to each other. The sequencing of many bacterial genomes has revealed that many proteobacteria also possess LuxRs that do not have a cognate LuxI protein associated with them. These LuxRs have been called orphans and more recently solos. LuxR solos are widespread in proteobacterial species that possess a canonical complete AHL QS system as well as in species that do not. In many cases more than one LuxR solo is present in a bacterial genome. Scientists are beginning to investigate these solos. Are solos responding to AHL signals? If present in a bacterium which possesses a canonical AHL QS system are solos an integral part of the regulatory circuit? Are LuxR solos eavesdropping on AHLs produced by neighboring bacteria? Have they evolved to respond to different signals instead of AHLs, and are these signals endogenously produced or exogenously provided? Are they involved in interkingdom signaling by responding to eukaryotic signals? Recent studies have revealed that LuxR solos are involved in several mechanisms of cell-cell communication in bacteria implicating them in bacterial intraspecies and interspecies communication as well as in interkingdom signaling by responding to molecules produced by eukaryotes. LuxR solos are likely to become major players in signaling since they are widespread among proteobacterial genomes and because initial studies highlight their different roles in bacterial communication. This Research Topic allows scientists studying or interested in LuxR solos to report their data and/or express their hypotheses and thoughts on this important and currently understudied family of signaling proteins.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LuxR solos</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Quorum Sensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">signaling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AHL</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Bacteria</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88919-917-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brian M.M. Ahmer</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:50:40 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2017-09-30 19:47:25 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338306570004498&amp;Force_direct=true</subfield><subfield code="Z">5338306570004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338306570004498</subfield></datafield></record></collection>