How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?

Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secret...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2017
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (188 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546799004498
ctrlnum (CKB)3800000000216328
(oapen)https://directory.doabooks.org/handle/20.500.12854/49590
(EXLCZ)993800000000216328
collection bib_alma
record_format marc
spelling Delphine Vincent auth
How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
Frontiers Media SA 2017
1 electronic resource (188 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Frontiers Research Topics
Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.
English
secretomics
extracellular proteins
Host-fungi interactions
Secretome
pathogenic fungi
Virulence Factors
protein effectors
Diseases
2-88945-087-2
Dominique Job auth
Maryam Rafiqi auth
Kim Marilyn Plummer auth
Marc-Henri Lebrun auth
Peter Solomon auth
language English
format eBook
author Delphine Vincent
spellingShingle Delphine Vincent
How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
Frontiers Research Topics
author_facet Delphine Vincent
Dominique Job
Maryam Rafiqi
Kim Marilyn Plummer
Marc-Henri Lebrun
Peter Solomon
author_variant d v dv
author2 Dominique Job
Maryam Rafiqi
Kim Marilyn Plummer
Marc-Henri Lebrun
Peter Solomon
author2_variant d j dj
m r mr
k m p kmp
m h l mhl
p s ps
author_sort Delphine Vincent
title How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_full How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_fullStr How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_full_unstemmed How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_auth How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_new How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
title_sort how can secretomics help unravel the secrets of plant-microbe interactions?
series Frontiers Research Topics
series2 Frontiers Research Topics
publisher Frontiers Media SA
publishDate 2017
physical 1 electronic resource (188 p.)
isbn 2-88945-087-2
illustrated Not Illustrated
work_keys_str_mv AT delphinevincent howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
AT dominiquejob howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
AT maryamrafiqi howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
AT kimmarilynplummer howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
AT marchenrilebrun howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
AT petersolomon howcansecretomicshelpunravelthesecretsofplantmicrobeinteractions
status_str n
ids_txt_mv (CKB)3800000000216328
(oapen)https://directory.doabooks.org/handle/20.500.12854/49590
(EXLCZ)993800000000216328
carrierType_str_mv cr
hierarchy_parent_title Frontiers Research Topics
is_hierarchy_title How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?
container_title Frontiers Research Topics
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
noLinkedField
noLinkedField
_version_ 1787551980237881344
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04302nam-a2200421z--4500</leader><controlfield tag="001">993546799004498</controlfield><controlfield tag="005">20231214133435.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2017 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)3800000000216328</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/49590</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)993800000000216328</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Delphine Vincent</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">How Can Secretomics Help Unravel the Secrets of Plant-Microbe Interactions?</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Frontiers Media SA</subfield><subfield code="c">2017</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (188 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Frontiers Research Topics</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Secretomics describes the global study of proteins that are secreted by a cell, a tissue or an organism, and has recently emerged as a field for which interest is rapidly growing. The term secretome was first coined at the turn of the millennium and was defined to comprise not only the native secreted proteins released into the extracellular space but also the components of machineries for protein secretion. Two secretory pathways have been described in fungi: i) the canonical pathway through which proteins bearing a N-terminal peptide signal can traverse the endoplasmic reticulum and Golgi apparatus, and ii) the unconventional pathway for proteins lacking a peptide signal. Protein secretion systems are more diverse in bacteria, in which types I to VII pathways as well as Sec or two-arginine (Tat) pathways have been described. In oomycete species, effectors are mostly small proteins containing an N-terminal signal peptide for secretion and additional C-terminal motifs such as RXLRs and CRNs for host targeting. It has recently been shown that oomycetes exploit non-conventional secretion mechanisms to transfer certain proteins to the extracellular environment. Other non-classical secretion systems involved in plant-fugal interaction include extracellular vesicles (EVs, Figure 1 from Samuel et al 2016 Front. Plant Sci. 6:766.). The versatility of oomycetes, fungi and bacteria allows them to associate with plants in many ways depending on whether they are biotroph, hemibiotroph, necrotroph, or saprotroph. When interacting with a live organism, a microbe will invade its plant host and manipulate its metabolisms either detrimentally if it is a pathogen or beneficially if it is a symbiote. Deciphering secretomes became a crucial biological question when an increasing body of evidence indicated that secreted proteins were the main effectors initiating interactions, whether of pathogenic or symbiotic nature, between microbes and their plant hosts. Secretomics may help to contribute to the global food security and to the ecosystem sustainability by addressing issues in i) plant biosecurity, with the design of crops resistant to pathogens, ii) crop yield enhancement, for example driven by arbuscular mycorrhizal fungi helping plant hosts utilise phosphate from the soil hence increase biomass, and iii) renewable energy, through the identification of microbial enzymes able to augment the bio-conversion of plant lignocellulosic materials for the production of second generation biofuels that do not compete with food production. To this day, more than a hundred secretomics studies have been published on all taxa and the number of publications is increasing steadily. Secretory pathways have been described in various species of microbes and/or their plant hosts, yet the functions of proteins secreted outside the cell remain to be fully grasped. This Research Topic aims at discussing how secretomics can assist the scientists in gaining knowledge about the mechanisms underpinning plant-microbe interactions.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">secretomics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">extracellular proteins</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Host-fungi interactions</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Secretome</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pathogenic fungi</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Virulence Factors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">protein effectors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Diseases</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">2-88945-087-2</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dominique Job</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maryam Rafiqi</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kim Marilyn Plummer</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marc-Henri Lebrun</subfield><subfield code="4">auth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peter Solomon</subfield><subfield code="4">auth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:54:02 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2017-09-30 19:47:25 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338302250004498&amp;Force_direct=true</subfield><subfield code="Z">5338302250004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338302250004498</subfield></datafield></record></collection>