Single Membrane Channels Formed by Connexins or Pannexins: Focus on the Nervous System

Given that the extremely elaborated and dynamic functions performed by the nervous system require the close synchronization of brain cells, complex organisms have developed different mechanisms of intercellular communication. At this regard, paracrine signaling between neighboring cells is currently...

Full description

Saved in:
Bibliographic Details
Superior document:Frontiers Research Topics
:
Year of Publication:2016
Language:English
Series:Frontiers Research Topics
Physical Description:1 electronic resource (241 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 03723nam-a2200397z--4500
001 993546747204498
005 20231214132945.0
006 m o d
007 cr|mn|---annan
008 202102s2016 xx |||||o ||| 0|eng d
035 |a (CKB)3800000000216217 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/59414 
035 |a (EXLCZ)993800000000216217 
041 0 |a eng 
100 1 |a Juan Andres Orellana  |4 auth 
245 1 0 |a Single Membrane Channels Formed by Connexins or Pannexins: Focus on the Nervous System 
246 |a Single Membrane Channels Formed by Connexins or Pannexins 
260 |b Frontiers Media SA  |c 2016 
300 |a 1 electronic resource (241 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers Research Topics 
520 |a Given that the extremely elaborated and dynamic functions performed by the nervous system require the close synchronization of brain cells, complex organisms have developed different mechanisms of intercellular communication. At this regard, paracrine signaling between neighboring cells is currently recognized as one of the most widely distributed mechanisms of synchronization in the brain parenchyma. In mammals, paracrine signaling is in part mediated by single membrane channels formed by connexins (connexons/hemichannels) or pannexins (pannexons), which are two different membrane protein families composed of about 20 and 3 members, respectively. Single membrane channels formed by these proteins serve as aqueous pores permeable to ions and small molecules, allowing the diffusional exchange between the intra- and extracellular milieu. Thus, connexin hemichannels and pannexons permit the release of significant quantities of autocrine/paracrine signaling molecules (e.g., ATP, glutamate, NAD+, adenosine and PGE2) into the extracellular milieu, as well as the uptake of small molecules. An increasing body of evidence has revealed that connexin hemichannels and pannexons play a crucial role in a plethora of brain processes including blood flow regulation, Ca2+ wave propagation, memory consolidation, glucose sensing and cell migration and adhesion. Considering the multiple cell signaling functions of these channels, their dysregulation is proposed not only as potential pathological biomarker, but it has been implicated in the pathogenesis and progression of diverse brain diseases (e.g., meningitis, Alzheimer’s disease and stroke). The aim of this Research Topic is to gather a collection of original research articles, method, protocols, short communications, opinions, perspectives, as well as review articles, providing the latest progress and insights in the field of connexin hemichannels and pannexons in the nervous system. Within this volume we plan to cover from basic research including channel structure, regulation, pharmacology and trafficking; to different biological functions in the physiology (behavior, plasticity, neurogenesis, blood flow control, neuron-glia crosstalk, cell migration and differentiation) as well as in the pathophysiology (neuroinflammation, mutation-related diseases, glial dysfunction and neurodegeneration) of the nervous system. We hope that this collection of articles will serve to understand how the signaling of connexin hemichannels and pannexons influences both normal and pathological brain function. 
546 |a English 
653 |a Brain 
653 |a pannexon 
653 |a Neuron 
653 |a connexon 
653 |a hemichannel 
653 |a pannexin 
653 |a astrocyte 
653 |a glia 
653 |a connexin 
653 |a Microglia 
776 |z 2-88919-890-1 
906 |a BOOK 
ADM |b 2023-12-15 05:37:56 Europe/Vienna  |f system  |c marc21  |a 2017-09-30 19:47:25 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338376680004498&Force_direct=true  |Z 5338376680004498  |b Available  |8 5338376680004498