Microelectrode Arrays and Application to Medical Devices

Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in micr...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (188 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546266204498
ctrlnum (CKB)5400000000045452
(oapen)https://directory.doabooks.org/handle/20.500.12854/69133
(EXLCZ)995400000000045452
collection bib_alma
record_format marc
spelling Dalton, Colin edt
Microelectrode Arrays and Application to Medical Devices
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (188 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain–machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications.
English
Technology: general issues bicssc
electrothermal
microelectrode
microfluidics
micromixing
micropump
alternating current (AC) electrokinetics
bisphenol A
self-assembly
biosensor
flexible electrode
polydimethylsiloxane (PDMS)
pyramid array micro-structures
low contact impedance
multimodal laser micromachining
ablation characteristics
shadow mask
interdigitated electrodes
soft sensors
liquid metal
fabrication
principle
arrays
application
induced-charge electrokinetic phenomenon
ego-dielectrophoresis
mobile electrode
Janus microsphere
continuous biomolecule collection
electroconvection
microelectrode array (MEA)
ion beam assisted electron beam deposition (IBAD)
indium tin oxide (ITO)
titanium nitride (TiN)
neurons
transparent
islets of Langerhans
insulin secretion
glucose stimulated insulin response
electrochemical transduction
intracortical microelectrode arrays
shape memory polymer
softening
robust
brain tissue oxygen
in vivo monitoring
multi-site clinical depth electrode
3-03943-174-9
3-03943-175-7
Salari, Alinaghi edt
Dalton, Colin oth
Salari, Alinaghi oth
language English
format eBook
author2 Salari, Alinaghi
Dalton, Colin
Salari, Alinaghi
author_facet Salari, Alinaghi
Dalton, Colin
Salari, Alinaghi
author2_variant c d cd
a s as
author2_role HerausgeberIn
Sonstige
Sonstige
title Microelectrode Arrays and Application to Medical Devices
spellingShingle Microelectrode Arrays and Application to Medical Devices
title_full Microelectrode Arrays and Application to Medical Devices
title_fullStr Microelectrode Arrays and Application to Medical Devices
title_full_unstemmed Microelectrode Arrays and Application to Medical Devices
title_auth Microelectrode Arrays and Application to Medical Devices
title_new Microelectrode Arrays and Application to Medical Devices
title_sort microelectrode arrays and application to medical devices
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (188 p.)
isbn 3-03943-174-9
3-03943-175-7
illustrated Not Illustrated
work_keys_str_mv AT daltoncolin microelectrodearraysandapplicationtomedicaldevices
AT salarialinaghi microelectrodearraysandapplicationtomedicaldevices
status_str n
ids_txt_mv (CKB)5400000000045452
(oapen)https://directory.doabooks.org/handle/20.500.12854/69133
(EXLCZ)995400000000045452
carrierType_str_mv cr
is_hierarchy_title Microelectrode Arrays and Application to Medical Devices
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1787548726661742592
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05037nam-a2200865z--4500</leader><controlfield tag="001">993546266204498</controlfield><controlfield tag="005">20231214133226.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000045452</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/69133</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000045452</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Dalton, Colin</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Microelectrode Arrays and Application to Medical Devices</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (188 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Microelectrode arrays are increasingly used in a wide variety of situations in the medical device sector. For example, one major challenge in microfluidic devices is the manipulation of fluids and droplets effectively at such scales. Due to the laminar flow regime (i.e., low Reynolds number) in microfluidic devices, the mixing of species is also difficult, and unless an active mixing strategy is employed, passive diffusion is the only mechanism that causes the fluid to mix. For many applications, diffusion is considered too slow, and thus many active pumping and mixing strategies have been employed using electrokinetic methods, which utilize a variety of simple and complex microelectrode array structures. Microelectrodes have also been implemented in in vitro intracellular delivery platforms to conduct cell electroporation on chip, where a highly localized electric field on the scale of a single cell is generated to enhance the uptake of extracellular material. In addition, microelectrode arrays are utilized in different microfluidic biosensing modalities, where a higher sensitivity, selectivity, and limit-of-detection are desired. Carbon nanotube microelectrode arrays are used for DNA detection, multi-electrode array chips are used for drug discovery, and there has been an explosion of research into brain–machine interfaces, fueled by microfabricated electrode arrays, both planar and three-dimensional. The advantages associated with microelectrode arrays include small size, the ability to manufacture repeatedly and reliably tens to thousands of micro-electrodes on both rigid and flexible substrates, and their utility for both in vitro and in vivo applications. To realize their full potential, there is a need to develop and integrate microelectrode arrays to form useful medical device systems. As the field of microelectrode array research is wide, and touches many application areas, it is often difficult to locate a single source of relevant information. This Special Issue seeks to showcase research papers, short communications, and review articles, that focus on the application of microelectrode arrays in the medical device sector. Particular interest will be paid to innovative application areas that can improve existing medical devices, such as for neuromodulation and real world lab-on-a-chip applications.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Technology: general issues</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrothermal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microelectrode</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microfluidics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micromixing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">micropump</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">alternating current (AC) electrokinetics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">bisphenol A</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">self-assembly</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biosensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">flexible electrode</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">polydimethylsiloxane (PDMS)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pyramid array micro-structures</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">low contact impedance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multimodal laser micromachining</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ablation characteristics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shadow mask</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">interdigitated electrodes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">soft sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">liquid metal</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fabrication</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">principle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">arrays</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">application</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">induced-charge electrokinetic phenomenon</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ego-dielectrophoresis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mobile electrode</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Janus microsphere</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">continuous biomolecule collection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electroconvection</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">microelectrode array (MEA)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ion beam assisted electron beam deposition (IBAD)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">indium tin oxide (ITO)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">titanium nitride (TiN)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">neurons</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transparent</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">islets of Langerhans</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">insulin secretion</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">glucose stimulated insulin response</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electrochemical transduction</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">intracortical microelectrode arrays</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">shape memory polymer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">softening</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">robust</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">brain tissue oxygen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in vivo monitoring</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">multi-site clinical depth electrode</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-174-9</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-175-7</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salari, Alinaghi</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dalton, Colin</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Salari, Alinaghi</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:47:05 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338172450004498&amp;Force_direct=true</subfield><subfield code="Z">5338172450004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338172450004498</subfield></datafield></record></collection>