Biosensors with Magnetic Nanocomponents

The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioappl...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (170 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546153904498
ctrlnum (CKB)5400000000045510
(oapen)https://directory.doabooks.org/handle/20.500.12854/68830
(EXLCZ)995400000000045510
collection bib_alma
record_format marc
spelling Kurlyandskaya, Galina V. edt
Biosensors with Magnetic Nanocomponents
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (170 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioapplications continues to challenge the materials science community to develop novel nanostructures that are suitable for such purposes. The principal requirements of a new generation of nanomaterials for sensor applications are based on well-known demands: high sensitivity, small size, low power consumption, stability, quick response, resistance to aggressive media, low price, and easy operation by nonskilled personnel. There are different types of magnetic effects capable of creating sensors for biology, medicine, and drug delivery, including magnetoresistance, spin valves, Hall and inductive effects, and giant magnetoimpedance. The present goal is to design nanomaterials both for magnetic markers and sensitive elements as synergetic pairs working in one device with adjusted characteristics of both materials. Synthetic approaches using the advantages of simulation methods and synthetic materials mimicking natural tissue properties can be useful, as can the further development of modeling strategies for magnetic nanostructures.
English
History of engineering & technology bicssc
magnetic multilayers
magnetoimpedance
modeling
magnetic sensors
magnetic biosensors
Magnetoimpedance effect
amorphous ribbons
patterned ribbons
meander sensitive element
magnetic field sensor
magnetic nanoparticles
contrast agent
relaxation
relaxation rate
Langevin model
magnetic field inhomogeneity
ferrogels
medical ultrasound
sonography
biomedical applications
magnetic polymersomes
magnetic vesicles
magnetoactive composites
nanocapsules
coarse-grained molecular dynamics
computer simulation
spintronics
CFA
thermoelectric effect
spin seebeck effect
magneto-impedance
biosensor
finite-element method
magnetic hyperthermia
specific loss power
magnetic mixed ferrites
hysteresis losses
thermometric measurements
nanobiotechnology
nanomedicine
therapeutics
biosensing
magnetoelasticity
precipitation
mass measurement
chemical sensor
3-03936-680-7
3-03936-681-5
Kurlyandskaya, Galina V. oth
language English
format eBook
author2 Kurlyandskaya, Galina V.
author_facet Kurlyandskaya, Galina V.
author2_variant g v k gv gvk
author2_role Sonstige
title Biosensors with Magnetic Nanocomponents
spellingShingle Biosensors with Magnetic Nanocomponents
title_full Biosensors with Magnetic Nanocomponents
title_fullStr Biosensors with Magnetic Nanocomponents
title_full_unstemmed Biosensors with Magnetic Nanocomponents
title_auth Biosensors with Magnetic Nanocomponents
title_new Biosensors with Magnetic Nanocomponents
title_sort biosensors with magnetic nanocomponents
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (170 p.)
isbn 3-03936-680-7
3-03936-681-5
illustrated Not Illustrated
work_keys_str_mv AT kurlyandskayagalinav biosensorswithmagneticnanocomponents
status_str n
ids_txt_mv (CKB)5400000000045510
(oapen)https://directory.doabooks.org/handle/20.500.12854/68830
(EXLCZ)995400000000045510
carrierType_str_mv cr
is_hierarchy_title Biosensors with Magnetic Nanocomponents
author2_original_writing_str_mv noLinkedField
_version_ 1796649071764570112
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03843nam-a2200841z--4500</leader><controlfield tag="001">993546153904498</controlfield><controlfield tag="005">20231214132843.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000045510</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/68830</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000045510</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kurlyandskaya, Galina V.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Biosensors with Magnetic Nanocomponents</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (170 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The selective and quantitative detection of biocomponents is greatly requested in biomedical applications and clinical diagnostics. Many traditional magnetic materials are not suitable for the ever-increasing demands of these processes. The push for a new generation of microscale sensors for bioapplications continues to challenge the materials science community to develop novel nanostructures that are suitable for such purposes. The principal requirements of a new generation of nanomaterials for sensor applications are based on well-known demands: high sensitivity, small size, low power consumption, stability, quick response, resistance to aggressive media, low price, and easy operation by nonskilled personnel. There are different types of magnetic effects capable of creating sensors for biology, medicine, and drug delivery, including magnetoresistance, spin valves, Hall and inductive effects, and giant magnetoimpedance. The present goal is to design nanomaterials both for magnetic markers and sensitive elements as synergetic pairs working in one device with adjusted characteristics of both materials. Synthetic approaches using the advantages of simulation methods and synthetic materials mimicking natural tissue properties can be useful, as can the further development of modeling strategies for magnetic nanostructures.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">History of engineering &amp; technology</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic multilayers</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetoimpedance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic sensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic biosensors</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Magnetoimpedance effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">amorphous ribbons</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">patterned ribbons</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">meander sensitive element</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic field sensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic nanoparticles</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">contrast agent</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">relaxation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">relaxation rate</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Langevin model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic field inhomogeneity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ferrogels</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">medical ultrasound</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sonography</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biomedical applications</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic polymersomes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic vesicles</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetoactive composites</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanocapsules</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">coarse-grained molecular dynamics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">computer simulation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spintronics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CFA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermoelectric effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">spin seebeck effect</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magneto-impedance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biosensor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite-element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic hyperthermia</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">specific loss power</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic mixed ferrites</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hysteresis losses</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">thermometric measurements</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanobiotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nanomedicine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">therapeutics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">biosensing</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetoelasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">precipitation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mass measurement</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chemical sensor</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-680-7</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-681-5</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurlyandskaya, Galina V.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:34:05 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338148750004498&amp;Force_direct=true</subfield><subfield code="Z">5338148750004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338148750004498</subfield></datafield></record></collection>