Novel Approaches for Structural Health Monitoring

The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (344 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 05203nam-a2201249z--4500
001 993546037004498
005 20231214133003.0
006 m o d
007 cr|mn|---annan
008 202201s2021 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000042296 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/77001 
035 |a (EXLCZ)995400000000042296 
041 0 |a eng 
100 1 |a Surace, Cecilia  |4 edt 
245 1 0 |a Novel Approaches for Structural Health Monitoring 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (344 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The thirty-plus years of progress in the field of structural health monitoring (SHM) have left a paramount impact on our everyday lives. Be it for the monitoring of fixed- and rotary-wing aircrafts, for the preservation of the cultural and architectural heritage, or for the predictive maintenance of long-span bridges or wind farms, SHM has shaped the framework of many engineering fields. Given the current state of quantitative and principled methodologies, it is nowadays possible to rapidly and consistently evaluate the structural safety of industrial machines, modern concrete buildings, historical masonry complexes, etc., to test their capability and to serve their intended purpose. However, old unsolved problematics as well as new challenges exist. Furthermore, unprecedented conditions, such as stricter safety requirements and ageing civil infrastructure, pose new challenges for confrontation. Therefore, this Special Issue gathers the main contributions of academics and practitioners in civil, aerospace, and mechanical engineering to provide a common ground for structural health monitoring in dealing with old and new aspects of this ever-growing research field. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a dynamic characteristic 
653 |a GB-RAR 
653 |a super high-rise building 
653 |a displacement 
653 |a wheel flat 
653 |a real-time monitoring 
653 |a strain distribution characteristics 
653 |a multisensor array 
653 |a precise positioning 
653 |a noncontact remote sensing (NRS) 
653 |a optical flow algorithm 
653 |a structural health monitoring (SHM) 
653 |a uniaxial automatic cruise acquisition device 
653 |a noise robustness 
653 |a sensitivity analysis 
653 |a cross-modal strain energy 
653 |a damage detection 
653 |a subspace system identification 
653 |a data-driven stochastic subspace identification (SSI-DATA) 
653 |a covariance-driven stochastic subspace identification (SSI-COV) 
653 |a combined subspace system identification 
653 |a PRISMA 
653 |a vibration-based damage detection 
653 |a crack damage detection 
653 |a piezoelectric impedance 
653 |a piezoelectric admittance 
653 |a peak frequency 
653 |a Bayesian inference 
653 |a uncertainty quantification 
653 |a masonry structures 
653 |a seismic structural health monitoring 
653 |a Bouc-Wen model 
653 |a model calibration 
653 |a hysteretic system identification 
653 |a BOTDR 
653 |a CFRP sheet 
653 |a un-bonded position 
653 |a cover delamination 
653 |a interfacial de-bonding 
653 |a monitoring system 
653 |a pipeline 
653 |a health and structural integrity 
653 |a Particle Impact Damper 
653 |a adaptive-passive damping 
653 |a damping of vibrations 
653 |a experiments 
653 |a submerged floating tunnel 
653 |a deep neural network 
653 |a machine learning 
653 |a sensor optimization 
653 |a failure monitoring accuracy 
653 |a mooring line 
653 |a sigmoid function 
653 |a Adamax 
653 |a categorical cross-entropy 
653 |a bending test 
653 |a bridge 
653 |a "compression-softening" theory 
653 |a frequency 
653 |a inverse problem 
653 |a nondestructive testing (NDT) method 
653 |a prestressed concrete (PC) girder 
653 |a prestress force determination 
653 |a prestress loss 
653 |a vertical deflection measurement 
653 |a rail 
653 |a guided wave ultrasound 
653 |a broken rail detection 
653 |a rail diagnostics 
653 |a structural health monitoring 
653 |a non destructive testing 
653 |a shape sensing 
653 |a inverse Finite Element Method 
653 |a fiber optics 
653 |a full-field reconstruction 
653 |a Structural Health Monitoring 
653 |a extreme function theory 
653 |a non-destructive testing 
653 |a extreme value theory 
653 |a generalised extreme distribution 
776 |z 3-0365-2404-5 
776 |z 3-0365-2405-3 
700 1 |a Surace, Cecilia  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:39:19 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338143600004498&Force_direct=true  |Z 5338143600004498  |b Available  |8 5338143600004498