Phytotechnology with biomass production : : sustainable management of contaminated sites / / edited by Larry E. Erickson and Valentina Pidlisnyuk.

"This book explains the concept of using phytotechnology with biomass production to improve soil quality and produce valuable products that have economic and social value. It is focused on the application of second generation biofuel crops to slightly contaminated or marginal post-military and...

Full description

Saved in:
Bibliographic Details
TeilnehmendeR:
Place / Publishing House:Boca Raton : : CRC Press,, 2021.
Year of Publication:2021
Edition:First edition.
Language:English
Physical Description:1 online resource (243 pages)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993546002704498
ctrlnum (CKB)4940000000598542
(MiAaPQ)EBC6552941
(Au-PeEL)EBL6552941
(OCoLC)1247674341
(OCoLC)1251739963
(OCoLC-P)1251739963
(FlBoTFG)9781003082613
(oapen)https://directory.doabooks.org/handle/20.500.12854/70982
(MiAaPQ)EBC7244881
(Au-PeEL)EBL7244881
(EXLCZ)994940000000598542
collection bib_alma
record_format marc
spelling Erickson, Larry E. edt
Phytotechnology with biomass production : sustainable management of contaminated sites / edited by Larry E. Erickson and Valentina Pidlisnyuk.
Phytotechnology with Biomass Production
First edition.
Taylor & Francis 2021
Boca Raton : CRC Press, 2021.
1 online resource (243 pages)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Description based on publisher supplied metadata and other sources.
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- 1. Introduction -- 1.1 Soil Quality -- 1.1.1 Soil Contamination -- 1.1.2 Types of Contaminants -- 1.2 Phytotechnology with Biomass Production -- 1.3 Miscanthus -- 1.4 Case Studies -- References -- 2. Phytotechnologies for Site Remediation -- 2.1 Introduction -- 2.2 Phytotechnologies -- 2.3 Phytostabilization of Arable Land Contaminated with Trace Elements -- 2.4 Bioenergy Crops and Phytostabilization Options -- 2.5 M. × giganteus as an Effective Phytoagent -- 2.5.1 Miscanthus Tolerance to Metals and Removal Capacity -- 2.5.2 Changes in Soil Parameters Induced by Miscanthus Phytoremediation -- 2.6 Miscanthus Phytotechnology in Action -- 2.6.1 M. × giganteus Application for Phytoremediation of Trace Elements' Contaminated Mining Soil, Tekeli, Kazakhstan -- 2.6.2 M. × giganteus Application for Phytoremediation of Post-Industrial Soil Contaminated with Trace Elements, Bakar, Croatia -- 2.6.3 Field Study Results, Fort Riley, Kansas, USA -- 2.7 Conclusions -- References -- 3. Remediation of Sites Contaminated by Organic Compounds -- 3.1 Introduction -- 3.2 Types of Organic Contaminants -- 3.2.1 Remediation of Petroleum Contaminants -- 3.2.2 Remediation of Explosives -- 3.2.3 Remediation of Chlorinated Hydrocarbons -- 3.2.4 Remediation of Pesticides -- 3.3 Landfills and Containment -- 3.4 Phytoremediation of Organic Contaminants with Miscanthus -- References -- 4. Phytomining Applied for Postmining Sites -- 4.1 Introduction -- 4.2 Advantages and Limitations of Phytomining -- 4.3 Field Experiments on Phytomining -- 4.4 Agronomic Practices -- 4.5 Economic Viability and Environmental Considerations -- 4.6 Options for Commercial Application of Phytomining -- 4.7 Conclusions and Perspectives -- References.
5. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites -- 5.1 Plant Selection and Breeding -- 5.2 Plant Establishment -- 5.2.1 Weight -- 5.2.2 Water -- 5.2.3 Weeds -- 5.2.4 Weather -- 5.3 Site Characterization -- 5.4 Plant Nutrition and Supplementation -- 5.5 Role of Soil Amendments -- 5.5.1 Impact of Soil Amendments on the Phytoremediation of Soil Contaminated by Organic Substances -- 5.5.2 Impact of Soil Amendments on Miscanthus Production in Postmilitary Soil -- 5.5.3 Impact of Soil Amendments on Miscanthus Biomass Production in Contaminated Postmining Soil -- 5.6 Geography and Soil Types -- 5.7 Role of Plant Growth Regulators in Production of M. × giganteus -- 5.7.1 Lab Research on Impact of PGRs on Phytoremediation with Biomass Production Using Soils from Military Sites Contaminated with Trace Elements -- 5.7.2 Field Research on Impact of PGRs on Biomass Parameters of M. × giganteus during Field Production on the Marginal and Slightly Contaminated Lands -- References -- 6. Balancing Soil Health and Biomass Production -- 6.1 Introduction -- 6.2 Properties of Soils -- 6.3 Soil Quality -- 6.4 Soil Health Affects Human Health -- 6.5 Improving Soil Health Using Phytotechnology -- 6.6 Conclusions -- References -- 7. Plant-Microbe Associations in Phytoremediation -- 7.1 Role of Plant-Microbe Association in Phytoremediation -- 7.1.1 Endophytic Bacteria -- 7.1.2 Rhizobacteria -- 7.2 Impact of PGPB Isolated from Contaminated Soil to Phytoremediation with Miscanthus -- 7.3 Influence of Rhizobacteria Isolated from Miscanthus Rhizosphere to Phytoremediation of Trace Elements Contaminated Soil -- 7.4 Changing of Soil Microbial Communities during Miscanthus Production at the Contaminated Military Land -- References -- 8. Plant Feeding Insects and Nematodes Associated with Miscanthus -- 8.1 Introduction.
8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts -- 8.2.1 Miscanthus Mealybug -- 8.2.1.1 Identification -- 8.2.1.2 Life Cycle -- 8.2.1.3 Damage -- 8.2.2 Aphids -- 8.2.2.1 Identification -- 8.2.2.2 Life Cycle -- 8.2.2.3 Damage -- 8.2.2.4 Identification -- 8.2.2.5 Life Cycle -- 8.2.2.6 Damage -- 8.3 Plant Feeding Insects with Chewing Mouth Parts -- 8.3.1 Generalist Coleoptera -- 8.3.1.1 Identification -- 8.3.1.2 Life Cycle -- 8.3.1.3 Damage -- 8.3.2 Generalist Lepidoptera -- 8.3.2.1 Identification -- 8.3.2.2 Life Cycle -- 8.3.2.3 Damage -- 8.3.3 Generalist Coleopteran -- 8.3.3.1 Identification -- 8.3.3.2 Life Cycle -- 8.3.3.3 Damage -- 8.4 Plant Feeding Nematodes Associate with M. × giganteus -- 8.4.1 PPNs − Potential Vector of Plant Viruses -- 8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders -- 8.4.3 The Indication of M. × giganteus Plantation State with Plant-Feeding Nematodes -- References -- 9. Economics of Phytoremediation with Biomass Production -- 9.1 Introduction to Phytoremediation with Biomass Production -- 9.2 Sustainable Approach -- 9.3 Benefits of Remediation -- 9.4 Motivation for Action -- 9.5 Economics of Phytoremediation -- 9.6 Economics of Biomass Production -- 9.7 Bioeconomy of Miscanthus in Europe -- 9.8 Conclusions -- References -- 10. Miscanthus Biomass for Alternative Energy Production -- 10.1 Introduction -- 10.2 Evaluation of Biomass Suitability for Energy -- 10.3 Bioethanol Production -- 10.3.1 Physicochemical Pretreatment -- 10.3.2 Enzymatic Hydrolysis and Fermentation -- 10.4 Biomethane and Biohydrogen Production -- 10.5 Thermochemical Conversion -- 10.5.1 Heat and Power Generation -- 10.5.2 Bio-Oil and Syngas Production -- References -- 11. Miscanthus as Raw Materials for Bio-based Products -- 11.1 Introduction -- 11.2 Material Products -- 11.2.1 Agricultural Products -- 11.2.1.1 Bedding Applications.
11.2.1.2 Mulch Applications -- 11.2.2 Insulation -- 11.2.3 Composites, Building Materials, Cement -- 11.2.4 Composite Materials -- 11.2.5 Hemicelluloses -- 11.3 Processing of Miscanthus to Fibers, Pulp, and Papers -- 11.4 Production of Pulp from M. × giganteus Biomass Produced on Pb-Contaminated Soil -- References -- 12. Conclusions and Recommendations -- 12.1 Conclusions -- 12.2 Recommendations -- References -- Index.
"This book explains the concept of using phytotechnology with biomass production to improve soil quality and produce valuable products that have economic and social value. It is focused on the application of second generation biofuel crops to slightly contaminated or marginal post-military and post-mining soils. Based on recent research from the US, Ukraine, Germany, and Poland, along with studies from other countries, this is the first comprehensive book on using phytotechnology with biomass production at contaminated sites at a global level. It's also a great new resource for those who want to study and plan phytotechnology projects as well as those who carry them out"-- Provided by publisher.
English
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International CC BY-NC-ND 4.0 https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode
Unrestricted online access star
Phytoremediation.
Soil remediation.
Energy crops.
SCIENCE / Environmental Science bisacsh
TECHNOLOGY / Agriculture / Soil Science bisacsh
miscanthus biomass
phytotechnology
soil carbon restoration
soil ecology
soil quality
sustainability
Erickson, L. E. (Larry Eugene), 1938- editor.
Pidlisnyuk, Valentina V., editor.
https://www.taylorfrancis.com/books/oa-edit/10.1201/9781003082613/phytotechnology-biomass-production-larry-erickson-valentina-pidlisnyuk
language English
format eBook
author2 Erickson, L. E. 1938-
Pidlisnyuk, Valentina V.,
author_facet Erickson, L. E. 1938-
Pidlisnyuk, Valentina V.,
author2_variant l e e le lee
l e e le lee
v v p vv vvp
author2_fuller (Larry Eugene),
author2_role TeilnehmendeR
TeilnehmendeR
title Phytotechnology with biomass production : sustainable management of contaminated sites /
spellingShingle Phytotechnology with biomass production : sustainable management of contaminated sites /
Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- 1. Introduction -- 1.1 Soil Quality -- 1.1.1 Soil Contamination -- 1.1.2 Types of Contaminants -- 1.2 Phytotechnology with Biomass Production -- 1.3 Miscanthus -- 1.4 Case Studies -- References -- 2. Phytotechnologies for Site Remediation -- 2.1 Introduction -- 2.2 Phytotechnologies -- 2.3 Phytostabilization of Arable Land Contaminated with Trace Elements -- 2.4 Bioenergy Crops and Phytostabilization Options -- 2.5 M. × giganteus as an Effective Phytoagent -- 2.5.1 Miscanthus Tolerance to Metals and Removal Capacity -- 2.5.2 Changes in Soil Parameters Induced by Miscanthus Phytoremediation -- 2.6 Miscanthus Phytotechnology in Action -- 2.6.1 M. × giganteus Application for Phytoremediation of Trace Elements' Contaminated Mining Soil, Tekeli, Kazakhstan -- 2.6.2 M. × giganteus Application for Phytoremediation of Post-Industrial Soil Contaminated with Trace Elements, Bakar, Croatia -- 2.6.3 Field Study Results, Fort Riley, Kansas, USA -- 2.7 Conclusions -- References -- 3. Remediation of Sites Contaminated by Organic Compounds -- 3.1 Introduction -- 3.2 Types of Organic Contaminants -- 3.2.1 Remediation of Petroleum Contaminants -- 3.2.2 Remediation of Explosives -- 3.2.3 Remediation of Chlorinated Hydrocarbons -- 3.2.4 Remediation of Pesticides -- 3.3 Landfills and Containment -- 3.4 Phytoremediation of Organic Contaminants with Miscanthus -- References -- 4. Phytomining Applied for Postmining Sites -- 4.1 Introduction -- 4.2 Advantages and Limitations of Phytomining -- 4.3 Field Experiments on Phytomining -- 4.4 Agronomic Practices -- 4.5 Economic Viability and Environmental Considerations -- 4.6 Options for Commercial Application of Phytomining -- 4.7 Conclusions and Perspectives -- References.
5. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites -- 5.1 Plant Selection and Breeding -- 5.2 Plant Establishment -- 5.2.1 Weight -- 5.2.2 Water -- 5.2.3 Weeds -- 5.2.4 Weather -- 5.3 Site Characterization -- 5.4 Plant Nutrition and Supplementation -- 5.5 Role of Soil Amendments -- 5.5.1 Impact of Soil Amendments on the Phytoremediation of Soil Contaminated by Organic Substances -- 5.5.2 Impact of Soil Amendments on Miscanthus Production in Postmilitary Soil -- 5.5.3 Impact of Soil Amendments on Miscanthus Biomass Production in Contaminated Postmining Soil -- 5.6 Geography and Soil Types -- 5.7 Role of Plant Growth Regulators in Production of M. × giganteus -- 5.7.1 Lab Research on Impact of PGRs on Phytoremediation with Biomass Production Using Soils from Military Sites Contaminated with Trace Elements -- 5.7.2 Field Research on Impact of PGRs on Biomass Parameters of M. × giganteus during Field Production on the Marginal and Slightly Contaminated Lands -- References -- 6. Balancing Soil Health and Biomass Production -- 6.1 Introduction -- 6.2 Properties of Soils -- 6.3 Soil Quality -- 6.4 Soil Health Affects Human Health -- 6.5 Improving Soil Health Using Phytotechnology -- 6.6 Conclusions -- References -- 7. Plant-Microbe Associations in Phytoremediation -- 7.1 Role of Plant-Microbe Association in Phytoremediation -- 7.1.1 Endophytic Bacteria -- 7.1.2 Rhizobacteria -- 7.2 Impact of PGPB Isolated from Contaminated Soil to Phytoremediation with Miscanthus -- 7.3 Influence of Rhizobacteria Isolated from Miscanthus Rhizosphere to Phytoremediation of Trace Elements Contaminated Soil -- 7.4 Changing of Soil Microbial Communities during Miscanthus Production at the Contaminated Military Land -- References -- 8. Plant Feeding Insects and Nematodes Associated with Miscanthus -- 8.1 Introduction.
8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts -- 8.2.1 Miscanthus Mealybug -- 8.2.1.1 Identification -- 8.2.1.2 Life Cycle -- 8.2.1.3 Damage -- 8.2.2 Aphids -- 8.2.2.1 Identification -- 8.2.2.2 Life Cycle -- 8.2.2.3 Damage -- 8.2.2.4 Identification -- 8.2.2.5 Life Cycle -- 8.2.2.6 Damage -- 8.3 Plant Feeding Insects with Chewing Mouth Parts -- 8.3.1 Generalist Coleoptera -- 8.3.1.1 Identification -- 8.3.1.2 Life Cycle -- 8.3.1.3 Damage -- 8.3.2 Generalist Lepidoptera -- 8.3.2.1 Identification -- 8.3.2.2 Life Cycle -- 8.3.2.3 Damage -- 8.3.3 Generalist Coleopteran -- 8.3.3.1 Identification -- 8.3.3.2 Life Cycle -- 8.3.3.3 Damage -- 8.4 Plant Feeding Nematodes Associate with M. × giganteus -- 8.4.1 PPNs − Potential Vector of Plant Viruses -- 8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders -- 8.4.3 The Indication of M. × giganteus Plantation State with Plant-Feeding Nematodes -- References -- 9. Economics of Phytoremediation with Biomass Production -- 9.1 Introduction to Phytoremediation with Biomass Production -- 9.2 Sustainable Approach -- 9.3 Benefits of Remediation -- 9.4 Motivation for Action -- 9.5 Economics of Phytoremediation -- 9.6 Economics of Biomass Production -- 9.7 Bioeconomy of Miscanthus in Europe -- 9.8 Conclusions -- References -- 10. Miscanthus Biomass for Alternative Energy Production -- 10.1 Introduction -- 10.2 Evaluation of Biomass Suitability for Energy -- 10.3 Bioethanol Production -- 10.3.1 Physicochemical Pretreatment -- 10.3.2 Enzymatic Hydrolysis and Fermentation -- 10.4 Biomethane and Biohydrogen Production -- 10.5 Thermochemical Conversion -- 10.5.1 Heat and Power Generation -- 10.5.2 Bio-Oil and Syngas Production -- References -- 11. Miscanthus as Raw Materials for Bio-based Products -- 11.1 Introduction -- 11.2 Material Products -- 11.2.1 Agricultural Products -- 11.2.1.1 Bedding Applications.
11.2.1.2 Mulch Applications -- 11.2.2 Insulation -- 11.2.3 Composites, Building Materials, Cement -- 11.2.4 Composite Materials -- 11.2.5 Hemicelluloses -- 11.3 Processing of Miscanthus to Fibers, Pulp, and Papers -- 11.4 Production of Pulp from M. × giganteus Biomass Produced on Pb-Contaminated Soil -- References -- 12. Conclusions and Recommendations -- 12.1 Conclusions -- 12.2 Recommendations -- References -- Index.
title_sub sustainable management of contaminated sites /
title_full Phytotechnology with biomass production : sustainable management of contaminated sites / edited by Larry E. Erickson and Valentina Pidlisnyuk.
title_fullStr Phytotechnology with biomass production : sustainable management of contaminated sites / edited by Larry E. Erickson and Valentina Pidlisnyuk.
title_full_unstemmed Phytotechnology with biomass production : sustainable management of contaminated sites / edited by Larry E. Erickson and Valentina Pidlisnyuk.
title_auth Phytotechnology with biomass production : sustainable management of contaminated sites /
title_alt Phytotechnology with Biomass Production
title_new Phytotechnology with biomass production :
title_sort phytotechnology with biomass production : sustainable management of contaminated sites /
publisher Taylor & Francis
CRC Press,
publishDate 2021
physical 1 online resource (243 pages)
edition First edition.
contents Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- 1. Introduction -- 1.1 Soil Quality -- 1.1.1 Soil Contamination -- 1.1.2 Types of Contaminants -- 1.2 Phytotechnology with Biomass Production -- 1.3 Miscanthus -- 1.4 Case Studies -- References -- 2. Phytotechnologies for Site Remediation -- 2.1 Introduction -- 2.2 Phytotechnologies -- 2.3 Phytostabilization of Arable Land Contaminated with Trace Elements -- 2.4 Bioenergy Crops and Phytostabilization Options -- 2.5 M. × giganteus as an Effective Phytoagent -- 2.5.1 Miscanthus Tolerance to Metals and Removal Capacity -- 2.5.2 Changes in Soil Parameters Induced by Miscanthus Phytoremediation -- 2.6 Miscanthus Phytotechnology in Action -- 2.6.1 M. × giganteus Application for Phytoremediation of Trace Elements' Contaminated Mining Soil, Tekeli, Kazakhstan -- 2.6.2 M. × giganteus Application for Phytoremediation of Post-Industrial Soil Contaminated with Trace Elements, Bakar, Croatia -- 2.6.3 Field Study Results, Fort Riley, Kansas, USA -- 2.7 Conclusions -- References -- 3. Remediation of Sites Contaminated by Organic Compounds -- 3.1 Introduction -- 3.2 Types of Organic Contaminants -- 3.2.1 Remediation of Petroleum Contaminants -- 3.2.2 Remediation of Explosives -- 3.2.3 Remediation of Chlorinated Hydrocarbons -- 3.2.4 Remediation of Pesticides -- 3.3 Landfills and Containment -- 3.4 Phytoremediation of Organic Contaminants with Miscanthus -- References -- 4. Phytomining Applied for Postmining Sites -- 4.1 Introduction -- 4.2 Advantages and Limitations of Phytomining -- 4.3 Field Experiments on Phytomining -- 4.4 Agronomic Practices -- 4.5 Economic Viability and Environmental Considerations -- 4.6 Options for Commercial Application of Phytomining -- 4.7 Conclusions and Perspectives -- References.
5. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites -- 5.1 Plant Selection and Breeding -- 5.2 Plant Establishment -- 5.2.1 Weight -- 5.2.2 Water -- 5.2.3 Weeds -- 5.2.4 Weather -- 5.3 Site Characterization -- 5.4 Plant Nutrition and Supplementation -- 5.5 Role of Soil Amendments -- 5.5.1 Impact of Soil Amendments on the Phytoremediation of Soil Contaminated by Organic Substances -- 5.5.2 Impact of Soil Amendments on Miscanthus Production in Postmilitary Soil -- 5.5.3 Impact of Soil Amendments on Miscanthus Biomass Production in Contaminated Postmining Soil -- 5.6 Geography and Soil Types -- 5.7 Role of Plant Growth Regulators in Production of M. × giganteus -- 5.7.1 Lab Research on Impact of PGRs on Phytoremediation with Biomass Production Using Soils from Military Sites Contaminated with Trace Elements -- 5.7.2 Field Research on Impact of PGRs on Biomass Parameters of M. × giganteus during Field Production on the Marginal and Slightly Contaminated Lands -- References -- 6. Balancing Soil Health and Biomass Production -- 6.1 Introduction -- 6.2 Properties of Soils -- 6.3 Soil Quality -- 6.4 Soil Health Affects Human Health -- 6.5 Improving Soil Health Using Phytotechnology -- 6.6 Conclusions -- References -- 7. Plant-Microbe Associations in Phytoremediation -- 7.1 Role of Plant-Microbe Association in Phytoremediation -- 7.1.1 Endophytic Bacteria -- 7.1.2 Rhizobacteria -- 7.2 Impact of PGPB Isolated from Contaminated Soil to Phytoremediation with Miscanthus -- 7.3 Influence of Rhizobacteria Isolated from Miscanthus Rhizosphere to Phytoremediation of Trace Elements Contaminated Soil -- 7.4 Changing of Soil Microbial Communities during Miscanthus Production at the Contaminated Military Land -- References -- 8. Plant Feeding Insects and Nematodes Associated with Miscanthus -- 8.1 Introduction.
8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts -- 8.2.1 Miscanthus Mealybug -- 8.2.1.1 Identification -- 8.2.1.2 Life Cycle -- 8.2.1.3 Damage -- 8.2.2 Aphids -- 8.2.2.1 Identification -- 8.2.2.2 Life Cycle -- 8.2.2.3 Damage -- 8.2.2.4 Identification -- 8.2.2.5 Life Cycle -- 8.2.2.6 Damage -- 8.3 Plant Feeding Insects with Chewing Mouth Parts -- 8.3.1 Generalist Coleoptera -- 8.3.1.1 Identification -- 8.3.1.2 Life Cycle -- 8.3.1.3 Damage -- 8.3.2 Generalist Lepidoptera -- 8.3.2.1 Identification -- 8.3.2.2 Life Cycle -- 8.3.2.3 Damage -- 8.3.3 Generalist Coleopteran -- 8.3.3.1 Identification -- 8.3.3.2 Life Cycle -- 8.3.3.3 Damage -- 8.4 Plant Feeding Nematodes Associate with M. × giganteus -- 8.4.1 PPNs − Potential Vector of Plant Viruses -- 8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders -- 8.4.3 The Indication of M. × giganteus Plantation State with Plant-Feeding Nematodes -- References -- 9. Economics of Phytoremediation with Biomass Production -- 9.1 Introduction to Phytoremediation with Biomass Production -- 9.2 Sustainable Approach -- 9.3 Benefits of Remediation -- 9.4 Motivation for Action -- 9.5 Economics of Phytoremediation -- 9.6 Economics of Biomass Production -- 9.7 Bioeconomy of Miscanthus in Europe -- 9.8 Conclusions -- References -- 10. Miscanthus Biomass for Alternative Energy Production -- 10.1 Introduction -- 10.2 Evaluation of Biomass Suitability for Energy -- 10.3 Bioethanol Production -- 10.3.1 Physicochemical Pretreatment -- 10.3.2 Enzymatic Hydrolysis and Fermentation -- 10.4 Biomethane and Biohydrogen Production -- 10.5 Thermochemical Conversion -- 10.5.1 Heat and Power Generation -- 10.5.2 Bio-Oil and Syngas Production -- References -- 11. Miscanthus as Raw Materials for Bio-based Products -- 11.1 Introduction -- 11.2 Material Products -- 11.2.1 Agricultural Products -- 11.2.1.1 Bedding Applications.
11.2.1.2 Mulch Applications -- 11.2.2 Insulation -- 11.2.3 Composites, Building Materials, Cement -- 11.2.4 Composite Materials -- 11.2.5 Hemicelluloses -- 11.3 Processing of Miscanthus to Fibers, Pulp, and Papers -- 11.4 Production of Pulp from M. × giganteus Biomass Produced on Pb-Contaminated Soil -- References -- 12. Conclusions and Recommendations -- 12.1 Conclusions -- 12.2 Recommendations -- References -- Index.
isbn 1-00-308261-0
1-003-08261-0
1-000-38728-3
1-000-38730-5
callnumber-first T - Technology
callnumber-subject TD - Environmental Technology
callnumber-label TD878
callnumber-sort TD 3878.48
illustrated Not Illustrated
dewey-hundreds 600 - Technology
dewey-tens 620 - Engineering
dewey-ones 628 - Sanitary & municipal engineering
dewey-full 628/.74
dewey-sort 3628 274
dewey-raw 628/.74
dewey-search 628/.74
oclc_num 1247674341
1251739963
work_keys_str_mv AT ericksonlarrye phytotechnologywithbiomassproductionsustainablemanagementofcontaminatedsites
AT ericksonle phytotechnologywithbiomassproductionsustainablemanagementofcontaminatedsites
AT pidlisnyukvalentinav phytotechnologywithbiomassproductionsustainablemanagementofcontaminatedsites
AT ericksonlarrye phytotechnologywithbiomassproduction
AT ericksonle phytotechnologywithbiomassproduction
AT pidlisnyukvalentinav phytotechnologywithbiomassproduction
status_str c
ids_txt_mv (CKB)4940000000598542
(MiAaPQ)EBC6552941
(Au-PeEL)EBL6552941
(OCoLC)1247674341
(OCoLC)1251739963
(OCoLC-P)1251739963
(FlBoTFG)9781003082613
(oapen)https://directory.doabooks.org/handle/20.500.12854/70982
(MiAaPQ)EBC7244881
(Au-PeEL)EBL7244881
(EXLCZ)994940000000598542
carrierType_str_mv cr
is_hierarchy_title Phytotechnology with biomass production : sustainable management of contaminated sites /
author2_original_writing_str_mv noLinkedField
noLinkedField
_version_ 1797653545627942912
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>09455cam a22007698i 4500</leader><controlfield tag="001">993546002704498</controlfield><controlfield tag="005">20240424225721.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr#|||||||||||</controlfield><controlfield tag="008">210510s2021 flu ob 001 0 eng </controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-00-308261-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-003-08261-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-000-38728-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1-000-38730-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1201/9781003082613</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4940000000598542</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC6552941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL6552941</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1247674341</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1251739963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC-P)1251739963</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(FlBoTFG)9781003082613</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/70982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(MiAaPQ)EBC7244881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(Au-PeEL)EBL7244881</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994940000000598542</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">OCoLC-P</subfield><subfield code="b">eng</subfield><subfield code="e">rda</subfield><subfield code="c">OCoLC-P</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="050" ind1="0" ind2="0"><subfield code="a">TD878.48</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">SCI</subfield><subfield code="x">026000</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">003060</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TEC</subfield><subfield code="x">010010</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="072" ind1=" " ind2="7"><subfield code="a">TQ</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="082" ind1="0" ind2="0"><subfield code="a">628/.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Erickson, Larry E.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="0" ind2="0"><subfield code="a">Phytotechnology with biomass production :</subfield><subfield code="b">sustainable management of contaminated sites /</subfield><subfield code="c">edited by Larry E. Erickson and Valentina Pidlisnyuk.</subfield></datafield><datafield tag="246" ind1=" " ind2=" "><subfield code="a">Phytotechnology with Biomass Production</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">First edition.</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">Taylor &amp; Francis</subfield><subfield code="c">2021</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Boca Raton :</subfield><subfield code="b">CRC Press,</subfield><subfield code="c">2021.</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (243 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="588" ind1=" " ind2=" "><subfield code="a">Description based on publisher supplied metadata and other sources.</subfield></datafield><datafield tag="505" ind1="0" ind2=" "><subfield code="a">Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Acknowledgments -- Editors -- Contributors -- 1. Introduction -- 1.1 Soil Quality -- 1.1.1 Soil Contamination -- 1.1.2 Types of Contaminants -- 1.2 Phytotechnology with Biomass Production -- 1.3 Miscanthus -- 1.4 Case Studies -- References -- 2. Phytotechnologies for Site Remediation -- 2.1 Introduction -- 2.2 Phytotechnologies -- 2.3 Phytostabilization of Arable Land Contaminated with Trace Elements -- 2.4 Bioenergy Crops and Phytostabilization Options -- 2.5 M. × giganteus as an Effective Phytoagent -- 2.5.1 Miscanthus Tolerance to Metals and Removal Capacity -- 2.5.2 Changes in Soil Parameters Induced by Miscanthus Phytoremediation -- 2.6 Miscanthus Phytotechnology in Action -- 2.6.1 M. × giganteus Application for Phytoremediation of Trace Elements' Contaminated Mining Soil, Tekeli, Kazakhstan -- 2.6.2 M. × giganteus Application for Phytoremediation of Post-Industrial Soil Contaminated with Trace Elements, Bakar, Croatia -- 2.6.3 Field Study Results, Fort Riley, Kansas, USA -- 2.7 Conclusions -- References -- 3. Remediation of Sites Contaminated by Organic Compounds -- 3.1 Introduction -- 3.2 Types of Organic Contaminants -- 3.2.1 Remediation of Petroleum Contaminants -- 3.2.2 Remediation of Explosives -- 3.2.3 Remediation of Chlorinated Hydrocarbons -- 3.2.4 Remediation of Pesticides -- 3.3 Landfills and Containment -- 3.4 Phytoremediation of Organic Contaminants with Miscanthus -- References -- 4. Phytomining Applied for Postmining Sites -- 4.1 Introduction -- 4.2 Advantages and Limitations of Phytomining -- 4.3 Field Experiments on Phytomining -- 4.4 Agronomic Practices -- 4.5 Economic Viability and Environmental Considerations -- 4.6 Options for Commercial Application of Phytomining -- 4.7 Conclusions and Perspectives -- References.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">5. Establishing Miscanthus, Production of Biomass, and Application to Contaminated Sites -- 5.1 Plant Selection and Breeding -- 5.2 Plant Establishment -- 5.2.1 Weight -- 5.2.2 Water -- 5.2.3 Weeds -- 5.2.4 Weather -- 5.3 Site Characterization -- 5.4 Plant Nutrition and Supplementation -- 5.5 Role of Soil Amendments -- 5.5.1 Impact of Soil Amendments on the Phytoremediation of Soil Contaminated by Organic Substances -- 5.5.2 Impact of Soil Amendments on Miscanthus Production in Postmilitary Soil -- 5.5.3 Impact of Soil Amendments on Miscanthus Biomass Production in Contaminated Postmining Soil -- 5.6 Geography and Soil Types -- 5.7 Role of Plant Growth Regulators in Production of M. × giganteus -- 5.7.1 Lab Research on Impact of PGRs on Phytoremediation with Biomass Production Using Soils from Military Sites Contaminated with Trace Elements -- 5.7.2 Field Research on Impact of PGRs on Biomass Parameters of M. × giganteus during Field Production on the Marginal and Slightly Contaminated Lands -- References -- 6. Balancing Soil Health and Biomass Production -- 6.1 Introduction -- 6.2 Properties of Soils -- 6.3 Soil Quality -- 6.4 Soil Health Affects Human Health -- 6.5 Improving Soil Health Using Phytotechnology -- 6.6 Conclusions -- References -- 7. Plant-Microbe Associations in Phytoremediation -- 7.1 Role of Plant-Microbe Association in Phytoremediation -- 7.1.1 Endophytic Bacteria -- 7.1.2 Rhizobacteria -- 7.2 Impact of PGPB Isolated from Contaminated Soil to Phytoremediation with Miscanthus -- 7.3 Influence of Rhizobacteria Isolated from Miscanthus Rhizosphere to Phytoremediation of Trace Elements Contaminated Soil -- 7.4 Changing of Soil Microbial Communities during Miscanthus Production at the Contaminated Military Land -- References -- 8. Plant Feeding Insects and Nematodes Associated with Miscanthus -- 8.1 Introduction.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">8.2 Plant Feeding Insects with Piercing-Sucking Mouth Parts -- 8.2.1 Miscanthus Mealybug -- 8.2.1.1 Identification -- 8.2.1.2 Life Cycle -- 8.2.1.3 Damage -- 8.2.2 Aphids -- 8.2.2.1 Identification -- 8.2.2.2 Life Cycle -- 8.2.2.3 Damage -- 8.2.2.4 Identification -- 8.2.2.5 Life Cycle -- 8.2.2.6 Damage -- 8.3 Plant Feeding Insects with Chewing Mouth Parts -- 8.3.1 Generalist Coleoptera -- 8.3.1.1 Identification -- 8.3.1.2 Life Cycle -- 8.3.1.3 Damage -- 8.3.2 Generalist Lepidoptera -- 8.3.2.1 Identification -- 8.3.2.2 Life Cycle -- 8.3.2.3 Damage -- 8.3.3 Generalist Coleopteran -- 8.3.3.1 Identification -- 8.3.3.2 Life Cycle -- 8.3.3.3 Damage -- 8.4 Plant Feeding Nematodes Associate with M. × giganteus -- 8.4.1 PPNs − Potential Vector of Plant Viruses -- 8.4.2 Ecto-, Endoparasites, and Hyphal/Root Feeders -- 8.4.3 The Indication of M. × giganteus Plantation State with Plant-Feeding Nematodes -- References -- 9. Economics of Phytoremediation with Biomass Production -- 9.1 Introduction to Phytoremediation with Biomass Production -- 9.2 Sustainable Approach -- 9.3 Benefits of Remediation -- 9.4 Motivation for Action -- 9.5 Economics of Phytoremediation -- 9.6 Economics of Biomass Production -- 9.7 Bioeconomy of Miscanthus in Europe -- 9.8 Conclusions -- References -- 10. Miscanthus Biomass for Alternative Energy Production -- 10.1 Introduction -- 10.2 Evaluation of Biomass Suitability for Energy -- 10.3 Bioethanol Production -- 10.3.1 Physicochemical Pretreatment -- 10.3.2 Enzymatic Hydrolysis and Fermentation -- 10.4 Biomethane and Biohydrogen Production -- 10.5 Thermochemical Conversion -- 10.5.1 Heat and Power Generation -- 10.5.2 Bio-Oil and Syngas Production -- References -- 11. Miscanthus as Raw Materials for Bio-based Products -- 11.1 Introduction -- 11.2 Material Products -- 11.2.1 Agricultural Products -- 11.2.1.1 Bedding Applications.</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">11.2.1.2 Mulch Applications -- 11.2.2 Insulation -- 11.2.3 Composites, Building Materials, Cement -- 11.2.4 Composite Materials -- 11.2.5 Hemicelluloses -- 11.3 Processing of Miscanthus to Fibers, Pulp, and Papers -- 11.4 Production of Pulp from M. × giganteus Biomass Produced on Pb-Contaminated Soil -- References -- 12. Conclusions and Recommendations -- 12.1 Conclusions -- 12.2 Recommendations -- References -- Index.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">"This book explains the concept of using phytotechnology with biomass production to improve soil quality and produce valuable products that have economic and social value. It is focused on the application of second generation biofuel crops to slightly contaminated or marginal post-military and post-mining soils. Based on recent research from the US, Ukraine, Germany, and Poland, along with studies from other countries, this is the first comprehensive book on using phytotechnology with biomass production at contaminated sites at a global level. It's also a great new resource for those who want to study and plan phytotechnology projects as well as those who carry them out"--</subfield><subfield code="c">Provided by publisher.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="540" ind1=" " ind2=" "><subfield code="a">Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International</subfield><subfield code="f">CC BY-NC-ND 4.0</subfield><subfield code="u">https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode</subfield></datafield><datafield tag="506" ind1="0" ind2=" "><subfield code="f">Unrestricted online access</subfield><subfield code="2">star</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Phytoremediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Soil remediation.</subfield></datafield><datafield tag="650" ind1=" " ind2="0"><subfield code="a">Energy crops.</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Environmental Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY / Agriculture / Soil Science</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">miscanthus biomass</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">phytotechnology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">soil carbon restoration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">soil ecology</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">soil quality</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sustainability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Erickson, L. E.</subfield><subfield code="q">(Larry Eugene),</subfield><subfield code="d">1938-</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pidlisnyuk, Valentina V.,</subfield><subfield code="e">editor.</subfield></datafield><datafield tag="856" ind1=" " ind2=" "><subfield code="a">https://www.taylorfrancis.com/books/oa-edit/10.1201/9781003082613/phytotechnology-biomass-production-larry-erickson-valentina-pidlisnyuk</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2024-04-26 02:57:56 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2021-05-11 07:57:52 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338063370004498&amp;Force_direct=true</subfield><subfield code="Z">5338063370004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338063370004498</subfield></datafield></record></collection>