New Advances in High-Entropy Alloys

In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial confi...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (652 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 08360nam-a2202269z--4500
001 993545935704498
005 20231214133104.0
006 m o d
007 cr|mn|---annan
008 202105s2021 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000043421 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/68380 
035 |a (EXLCZ)995400000000043421 
041 0 |a eng 
100 1 |a Zhang, Yong  |4 edt 
245 1 0 |a New Advances in High-Entropy Alloys 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (652 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently needed. 
546 |a English 
650 7 |a Research & information: general  |2 bicssc 
653 |a high-entropy alloys 
653 |a alloys design 
653 |a lightweight alloys 
653 |a high entropy alloys 
653 |a elemental addition 
653 |a annealing treatment 
653 |a magnetic property 
653 |a microhardness 
653 |a in situ X-ray diffraction 
653 |a grain refinement 
653 |a thermoelectric properties 
653 |a scandium effect 
653 |a HEA 
653 |a high-entropy alloy 
653 |a CCA 
653 |a compositionally complex alloy 
653 |a phase composition 
653 |a microstructure 
653 |a wear behaviour 
653 |a metal matrix composites 
653 |a mechanical properties 
653 |a high-entropy films 
653 |a phase structures 
653 |a hardness 
653 |a solid-solution 
653 |a interstitial phase 
653 |a transmission electron microscopy 
653 |a compositionally complex alloys 
653 |a CrFeCoNi(Nb,Mo) 
653 |a corrosion 
653 |a sulfuric acid 
653 |a sodium chloride 
653 |a entropy 
653 |a multicomponent 
653 |a differential scanning calorimetry (DSC) 
653 |a specific heat 
653 |a stacking-fault energy 
653 |a density functional theory 
653 |a nanoscaled high-entropy alloys 
653 |a nanodisturbances 
653 |a phase transformations 
653 |a atomic-scale unstable 
653 |a mechanical alloying 
653 |a spark plasma sintering 
653 |a nanoprecipitates 
653 |a annealing 
653 |a phase constituent 
653 |a ion irradiation 
653 |a hardening behavior 
653 |a volume swelling 
653 |a medium entropy alloy 
653 |a high-pressure torsion 
653 |a partial recrystallization 
653 |a tensile strength 
653 |a high-entropy alloys (HEAs) 
653 |a phase constitution 
653 |a magnetic properties 
653 |a Curie temperature 
653 |a phase transition 
653 |a precipitation 
653 |a strengthening 
653 |a coherent microstructure 
653 |a conventional alloys 
653 |a nanocrystalline materials 
653 |a high entropy alloy 
653 |a sputtering 
653 |a deformation and fracture 
653 |a strain rate sensitivity 
653 |a liquid phase separation 
653 |a immiscible alloys 
653 |a HEAs 
653 |a multicomponent alloys 
653 |a miscibility gaps 
653 |a multi-principal element alloys 
653 |a MPEAs 
653 |a complex concentrated alloys 
653 |a CCAs 
653 |a electron microscopy 
653 |a plasticity methods 
653 |a plasticity 
653 |a serration behavior 
653 |a alloy design 
653 |a structural metals 
653 |a CALPHAD 
653 |a solid-solution alloys 
653 |a lattice distortion 
653 |a phase transformation 
653 |a (CoCrFeNi)100−xMox alloys 
653 |a corrosion behavior 
653 |a gamma double prime nanoparticles 
653 |a elemental partitioning 
653 |a atom probe tomography 
653 |a first-principles calculations 
653 |a bcc 
653 |a phase stability 
653 |a composition scanning 
653 |a laser cladding 
653 |a high-entropy alloy coating 
653 |a AZ91D magnesium alloy 
653 |a wear 
653 |a kinetics 
653 |a deformation 
653 |a thermal expansion 
653 |a diamond 
653 |a composite 
653 |a powder metallurgy 
653 |a additive manufacturing 
653 |a low-activation high-entropy alloys (HEAs) 
653 |a high-temperature structural alloys 
653 |a microstructures 
653 |a compressive properties 
653 |a heat-softening resistance 
653 |a tensile creep behavior 
653 |a microstructural evolution 
653 |a creep mechanism 
653 |a first-principles calculation 
653 |a maximum entropy 
653 |a elastic property 
653 |a mechanical property 
653 |a recrystallization 
653 |a laser metal deposition 
653 |a elemental powder 
653 |a graded material 
653 |a refractory high-entropy alloys 
653 |a elevated-temperature yield strength 
653 |a solid solution strengthening effect 
653 |a bulk metallic glass 
653 |a complex stress field 
653 |a shear band 
653 |a flow serration 
653 |a deformation mechanism 
653 |a ab initio 
653 |a configuration entropy 
653 |a matrix formulation 
653 |a cluster expansion 
653 |a cluster variation method 
653 |a monte carlo 
653 |a thermodynamic integration 
653 |a (AlCrTiZrV)-Six-N films 
653 |a nanocomposite structure 
653 |a refractory high entropy alloys 
653 |a medium entropy alloys, mechanical properties 
653 |a thin films 
653 |a deformation behaviors 
653 |a nanocrystalline 
653 |a coating 
653 |a interface 
653 |a mechanical characterization 
653 |a high pressure 
653 |a polymorphic transition 
653 |a solidification 
653 |a eutectic dendrites 
653 |a hierarchical nanotwins 
653 |a precipitation kinetics 
653 |a strengthening mechanisms 
653 |a elongation prediction 
653 |a welding 
653 |a Hall–Petch (H–P) effect 
653 |a lattice constants 
653 |a high-entropy ceramic 
653 |a solid-state diffusion 
653 |a phase evolution 
653 |a mechanical behaviors 
653 |a high-entropy film 
653 |a low-activation alloys 
776 |z 3-03943-619-8 
776 |z 3-03943-620-1 
700 1 |a Zhang, Yong  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:42:46 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338093270004498&Force_direct=true  |Z 5338093270004498  |b Available  |8 5338093270004498