Energy Efficiency in Electric Devices, Machines and Drives

This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (218 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545868504498
ctrlnum (CKB)5400000000045750
(oapen)https://directory.doabooks.org/handle/20.500.12854/68648
(EXLCZ)995400000000045750
collection bib_alma
record_format marc
spelling Štumberger, Gorazd edt
Energy Efficiency in Electric Devices, Machines and Drives
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (218 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron core size and improve the efficiency of the welding system operation. New structures of the single-phase field excited flux switching machine improve its performance in terms of torque, while having higher back-EMF and unbalanced electromagnetic forces. A properly designed rotor notch reduces the torque ripple and cogging torque of interior permanent magnet motors for the drive platform of electric vehicles, resulting in lower vibrations and noise. In the field of modelling, the torque estimation of a Halbach array surface permanent magnet motor with a non-overlapping winding layout was improved by introducing an analytical two-dimensional subdomain model. A general method for determining the magnetically nonlinear two-axis dynamic models of rotary and linear synchronous reluctance machines and synchronous permanent magnet machines is introduced that considers the effects of slotting, mutual interaction between the slots and permanent magnets, saturation, cross saturation, and end effects. Advanced modern control solutions, such as neural network-based model reference adaptive control, fuzzy control, senseless control, torque/speed tracking control derived from the 3D non-holonomic integrator, including drift terms, maximum torque per ampere, and maximum efficiency characteristics, are applied to improve drive performance and overall system operation.
English
History of engineering & technology bicssc
interior permanent magnet synchronous motor
torque ripple
cogging torque
electric vehicle
notch
mathematical model
Halbach Array
surface permanent magnet
magnetic vector potential
torque
in-wheel electric vehicle
independent 4-wheel drive
torque distribution
fuzzy control
traction control
active yawrate control
energy efficiency
industry
water circuits
OpenModelica
optimisation
induction motor
speed estimation
model reference adaptive system
kalman filter
luenberger observer
flux switching machine
modular rotor
non-overlap winding
magnetic flux analysis
iron losses
copper loss
stress analysis
finite element method
magnetic loss
maximum efficiency (ME) characteristic
maximum torque per ampere (MTPA) characteristic
modeling
permanent magnet synchronous machine (PMSM)
sensorless control
synchronous machines
dynamic models
nonlinear magnetics
parameter estimation
DC-DC converter
resistance spot welding
transformer
efficiency
dynamic power loss
design
induction machines
nonlinear control
torque/speed control
3-03936-356-5
3-03936-357-3
Polajžer, Boštjan edt
Štumberger, Gorazd oth
Polajžer, Boštjan oth
language English
format eBook
author2 Polajžer, Boštjan
Štumberger, Gorazd
Polajžer, Boštjan
author_facet Polajžer, Boštjan
Štumberger, Gorazd
Polajžer, Boštjan
author2_variant g š gš
b p bp
author2_role HerausgeberIn
Sonstige
Sonstige
title Energy Efficiency in Electric Devices, Machines and Drives
spellingShingle Energy Efficiency in Electric Devices, Machines and Drives
title_full Energy Efficiency in Electric Devices, Machines and Drives
title_fullStr Energy Efficiency in Electric Devices, Machines and Drives
title_full_unstemmed Energy Efficiency in Electric Devices, Machines and Drives
title_auth Energy Efficiency in Electric Devices, Machines and Drives
title_new Energy Efficiency in Electric Devices, Machines and Drives
title_sort energy efficiency in electric devices, machines and drives
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (218 p.)
isbn 3-03936-356-5
3-03936-357-3
illustrated Not Illustrated
work_keys_str_mv AT stumbergergorazd energyefficiencyinelectricdevicesmachinesanddrives
AT polajzerbostjan energyefficiencyinelectricdevicesmachinesanddrives
status_str n
ids_txt_mv (CKB)5400000000045750
(oapen)https://directory.doabooks.org/handle/20.500.12854/68648
(EXLCZ)995400000000045750
carrierType_str_mv cr
is_hierarchy_title Energy Efficiency in Electric Devices, Machines and Drives
author2_original_writing_str_mv noLinkedField
noLinkedField
noLinkedField
_version_ 1787548866899345408
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04564nam-a2200949z--4500</leader><controlfield tag="001">993545868504498</controlfield><controlfield tag="005">20231214132828.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000045750</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/68648</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000045750</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Štumberger, Gorazd</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Energy Efficiency in Electric Devices, Machines and Drives</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (218 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">This Special Issue deals with improvements in the energy efficiency of electric devices, machines, and drives, which are achieved through improvements in the design, modelling, control, and operation of the system. Properly sized and placed coils of a welding transformer can reduce the required iron core size and improve the efficiency of the welding system operation. New structures of the single-phase field excited flux switching machine improve its performance in terms of torque, while having higher back-EMF and unbalanced electromagnetic forces. A properly designed rotor notch reduces the torque ripple and cogging torque of interior permanent magnet motors for the drive platform of electric vehicles, resulting in lower vibrations and noise. In the field of modelling, the torque estimation of a Halbach array surface permanent magnet motor with a non-overlapping winding layout was improved by introducing an analytical two-dimensional subdomain model. A general method for determining the magnetically nonlinear two-axis dynamic models of rotary and linear synchronous reluctance machines and synchronous permanent magnet machines is introduced that considers the effects of slotting, mutual interaction between the slots and permanent magnets, saturation, cross saturation, and end effects. Advanced modern control solutions, such as neural network-based model reference adaptive control, fuzzy control, senseless control, torque/speed tracking control derived from the 3D non-holonomic integrator, including drift terms, maximum torque per ampere, and maximum efficiency characteristics, are applied to improve drive performance and overall system operation.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">History of engineering &amp; technology</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">interior permanent magnet synchronous motor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torque ripple</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cogging torque</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">electric vehicle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">notch</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mathematical model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Halbach Array</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">surface permanent magnet</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic vector potential</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torque</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in-wheel electric vehicle</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">independent 4-wheel drive</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torque distribution</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fuzzy control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">traction control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">active yawrate control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">energy efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">industry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">water circuits</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">OpenModelica</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">optimisation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">induction motor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">speed estimation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">model reference adaptive system</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">kalman filter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">luenberger observer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">flux switching machine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modular rotor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">non-overlap winding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic flux analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">iron losses</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">copper loss</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">stress analysis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">finite element method</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">magnetic loss</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">maximum efficiency (ME) characteristic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">maximum torque per ampere (MTPA) characteristic</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">modeling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">permanent magnet synchronous machine (PMSM)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">sensorless control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">synchronous machines</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic models</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nonlinear magnetics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">parameter estimation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DC-DC converter</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">resistance spot welding</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">transformer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">efficiency</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dynamic power loss</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">design</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">induction machines</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nonlinear control</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">torque/speed control</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-356-5</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-357-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polajžer, Boštjan</subfield><subfield code="4">edt</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Štumberger, Gorazd</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Polajžer, Boštjan</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:32:29 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338073070004498&amp;Force_direct=true</subfield><subfield code="Z">5338073070004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338073070004498</subfield></datafield></record></collection>