Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications

The number of males diagnosed with prostate cancer (PCa) is increasing all over the world. Most patients with early-stage PCa can be treated with appropriate therapy, such as radical prostatectomy or irradiation. On the other hand, androgen deprivation therapy (ADT) is the standard systemic therapy...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (184 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545855904498
ctrlnum (CKB)5400000000040879
(oapen)https://directory.doabooks.org/handle/20.500.12854/68688
(EXLCZ)995400000000040879
collection bib_alma
record_format marc
spelling Ishii, Kenichiro edt
Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (184 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
The number of males diagnosed with prostate cancer (PCa) is increasing all over the world. Most patients with early-stage PCa can be treated with appropriate therapy, such as radical prostatectomy or irradiation. On the other hand, androgen deprivation therapy (ADT) is the standard systemic therapy given to patients with advanced PCa. ADT induces temporary remission, but the majority of patients (approximately 60%) eventually progress to castration-resistant prostate cancer (CRPC), which is associated with a high mortality rate. Generally, well-differentiated PCa cells are androgen dependent, i.e., androgen receptor (AR) signalling regulates cell cycle and differentiation. The loss of AR signalling after ADT triggers androgen-independent outgrowth, generating poorly differentiated, uncontrollable PCa cells. Once PCa cells lose their sensitivity to ADT, effective therapies are limited. In the last few years, however, several new options for the treatment of CRPC have been approved, e.g., the CYP17 inhibitor, the AR antagonist, and the taxane. Despite this progress in the development of new drugs, there is a high medical need for optimizing the sequence and combination of approved drugs. Thus, the identification of predictive biomarkers may help in the context of personalized medicine to guide treatment decisions, improve clinical outcomes, and prevent unnecessary side effects. In this Special Issue Book, we focused on the cytobiology of human PCa cells and its clinical applications to develop a major step towards personalized medicine matched to the individual needs of patients with early-stage and advanced PCa and CRPC. We hope that this Special Issue Book attracts the attention of readers with expertise and interest in the cytobiology of PCa cells.
English
Medicine bicssc
androgen receptor
docetaxel
cabazitaxel
castration-resistant prostate cancer
chemotherapy
P-glycoprotein
EPI-002
splice variant
prostate-specific antigen
androgen deprivation therapy
time to PSA nadir
fibroblasts
prostate cancer
androgen sensitivity
pirfenidone
TGFβ1
G1 cell cycle arrest
fibroblast growth factor
fibroblast growth factor receptor
obesity
inflammation
immune cells
cytokine
high-fat diet
KIFC1
docetaxel resistance
apoptosis
CW069
Caveolin-1
TP53-regulated inhibitor of apoptosis 1
tumour stroma
tumour microenvironment
fibroblast
CAF
resistance
radiotherapy
CCL2
CCL22
CCL5
migration
LSD1
epigenetics
autophagy
abiraterone
enzalutamide
testosterone
castration resistant prostate cancer
animal model
diet
fat
in vitro
in vivo
mouse
AKR1C3
hormone-naïve prostate cancer
immunohistochemistry
tissue microarray
androgen receptor dependency
fibroblast-dependent androgen receptor activation
3-03936-034-5
3-03936-035-3
Ishii, Kenichiro oth
language English
format eBook
author2 Ishii, Kenichiro
author_facet Ishii, Kenichiro
author2_variant k i ki
author2_role Sonstige
title Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
spellingShingle Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_full Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_fullStr Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_full_unstemmed Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_auth Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_new Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
title_sort cytobiology of human prostate cancer cells and its clinical applications
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (184 p.)
isbn 3-03936-034-5
3-03936-035-3
illustrated Not Illustrated
work_keys_str_mv AT ishiikenichiro cytobiologyofhumanprostatecancercellsanditsclinicalapplications
status_str n
ids_txt_mv (CKB)5400000000040879
(oapen)https://directory.doabooks.org/handle/20.500.12854/68688
(EXLCZ)995400000000040879
carrierType_str_mv cr
is_hierarchy_title Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications
author2_original_writing_str_mv noLinkedField
_version_ 1796648786775244800
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04564nam-a2200997z--4500</leader><controlfield tag="001">993545855904498</controlfield><controlfield tag="005">20231214133528.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000040879</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/68688</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000040879</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Ishii, Kenichiro</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Cytobiology of Human Prostate Cancer Cells and Its Clinical Applications</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (184 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The number of males diagnosed with prostate cancer (PCa) is increasing all over the world. Most patients with early-stage PCa can be treated with appropriate therapy, such as radical prostatectomy or irradiation. On the other hand, androgen deprivation therapy (ADT) is the standard systemic therapy given to patients with advanced PCa. ADT induces temporary remission, but the majority of patients (approximately 60%) eventually progress to castration-resistant prostate cancer (CRPC), which is associated with a high mortality rate. Generally, well-differentiated PCa cells are androgen dependent, i.e., androgen receptor (AR) signalling regulates cell cycle and differentiation. The loss of AR signalling after ADT triggers androgen-independent outgrowth, generating poorly differentiated, uncontrollable PCa cells. Once PCa cells lose their sensitivity to ADT, effective therapies are limited. In the last few years, however, several new options for the treatment of CRPC have been approved, e.g., the CYP17 inhibitor, the AR antagonist, and the taxane. Despite this progress in the development of new drugs, there is a high medical need for optimizing the sequence and combination of approved drugs. Thus, the identification of predictive biomarkers may help in the context of personalized medicine to guide treatment decisions, improve clinical outcomes, and prevent unnecessary side effects. In this Special Issue Book, we focused on the cytobiology of human PCa cells and its clinical applications to develop a major step towards personalized medicine matched to the individual needs of patients with early-stage and advanced PCa and CRPC. We hope that this Special Issue Book attracts the attention of readers with expertise and interest in the cytobiology of PCa cells.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Medicine</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">androgen receptor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">docetaxel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cabazitaxel</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">castration-resistant prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chemotherapy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">P-glycoprotein</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">EPI-002</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">splice variant</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">prostate-specific antigen</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">androgen deprivation therapy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">time to PSA nadir</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fibroblasts</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">androgen sensitivity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">pirfenidone</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TGFβ1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">G1 cell cycle arrest</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fibroblast growth factor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fibroblast growth factor receptor</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">obesity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">inflammation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">immune cells</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">cytokine</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">high-fat diet</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">KIFC1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">docetaxel resistance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">apoptosis</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CW069</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Caveolin-1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">TP53-regulated inhibitor of apoptosis 1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tumour stroma</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tumour microenvironment</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fibroblast</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CAF</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">resistance</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">radiotherapy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CCL2</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CCL22</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">CCL5</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">migration</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">LSD1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">epigenetics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">autophagy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">abiraterone</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">enzalutamide</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">testosterone</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">castration resistant prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">animal model</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">diet</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fat</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in vitro</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">in vivo</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">mouse</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AKR1C3</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">hormone-naïve prostate cancer</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">immunohistochemistry</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">tissue microarray</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">androgen receptor dependency</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">fibroblast-dependent androgen receptor activation</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-034-5</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03936-035-3</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ishii, Kenichiro</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:56:52 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338069290004498&amp;Force_direct=true</subfield><subfield code="Z">5338069290004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338069290004498</subfield></datafield></record></collection>