Advanced Techniques for Ground Penetrating Radar Imaging

Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and...

Full description

Saved in:
Bibliographic Details
HerausgeberIn:
Sonstige:
Year of Publication:2021
Language:English
Physical Description:1 electronic resource (218 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 04896nam-a2200997z--4500
001 993545763504498
005 20231214133419.0
006 m o d
007 cr|mn|---annan
008 202201s2021 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000042504 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/76950 
035 |a (EXLCZ)995400000000042504 
041 0 |a eng 
100 1 |a López, Yuri  |4 edt 
245 1 0 |a Advanced Techniques for Ground Penetrating Radar Imaging 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2021 
300 |a 1 electronic resource (218 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
506 |a Open access  |f Unrestricted online access  |2 star 
520 |a Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives. 
546 |a English 
650 7 |a Technology: general issues  |2 bicssc 
653 |a Ground Penetrating Radar (GPR) 
653 |a Unmanned Aerial Vehicles (UAVs) 
653 |a Synthetic Aperture Radar (SAR) 
653 |a Real Time Kinematic (RTK) 
653 |a Ultra-Wide-Band (UWB) 
653 |a landmine and IED detection 
653 |a non-destructive testing 
653 |a GPR 
653 |a coherence 
653 |a semblance 
653 |a attribute analysis 
653 |a imaging 
653 |a GPR trace 
653 |a high-resolution data 
653 |a large-scale survey 
653 |a archaeological prospection 
653 |a Ground-Penetrating Radar 
653 |a velocity analysis 
653 |a coherency functionals 
653 |a GPR data processing 
653 |a GPR data migration 
653 |a spatial-variant convolution neural network (SV-CNN) 
653 |a spatial-variant convolution kernel (SV-CK) 
653 |a radar image enhancing 
653 |a MIMO radar 
653 |a neural networks 
653 |a imaging radar 
653 |a ground penetrating radar 
653 |a wavelet scattering network 
653 |a machine learning 
653 |a support vector machine 
653 |a pipeline identification 
653 |a snow 
653 |a snow water equivalent (SWE) 
653 |a stepped-frequency continuous wave radar (SFCW) 
653 |a software defined radio (SDR) 
653 |a snowpack multilayer reflectance 
653 |a Ground Penetrating Radar 
653 |a Synthetic Aperture Radar 
653 |a landmine 
653 |a Improvised Explosive Device 
653 |a radar 
653 |a noise attenuation 
653 |a Gaussian spike impulse noise 
653 |a deep convolutional denoising autoencoders (CDAEs) 
653 |a deep convolutional denoising autoencoders with network structure optimization (CDAEsNSO) 
653 |a applied geophysics 
653 |a digital signal processing 
653 |a enhancement of 3D-GPR datasets 
653 |a clutter noise removal 
653 |a spectral filtering 
653 |a ground-penetrating radar 
653 |a nondestructive testing 
653 |a pipelines detection 
653 |a modeling 
653 |a signal processing 
776 |z 3-0365-2149-6 
776 |z 3-0365-2150-X 
700 1 |a Fernández, María García  |4 edt 
700 1 |a López, Yuri  |4 oth 
700 1 |a Fernández, María García  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:53:24 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5338031580004498&Force_direct=true  |Z 5338031580004498  |b Available  |8 5338031580004498