Seed Dormancy : Molecular Control of Its Induction and Alleviation

The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The do...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (124 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545718504498
ctrlnum (CKB)5400000000041072
(oapen)https://directory.doabooks.org/handle/20.500.12854/69276
(EXLCZ)995400000000041072
collection bib_alma
record_format marc
spelling Matilla, Angel J. edt
Seed Dormancy Molecular Control of Its Induction and Alleviation
Seed Dormancy
Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute 2020
1 electronic resource (124 p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The dormancy of some seeds can be relieved through a tightly regulated process called after-ripening (AR) that occurs in viable seeds stored in a dry environment. Although ABA is directly involved in dormancy, recent data suggest that auxin also plays a preponderant role. On the other hand, the participation of reactive oxygen species (ROS) in the life of the seed is becoming increasingly confirmed. ROS accumulate at different stages of the seed’s life and are correlated with a low degree of dormancy. Thus, ROS increase upon AR and dormancy release. In the last decade, the advances in the knowledge of seed life have been noteworthy. In this Special Issue, those processes regulated by DOG1, auxin, and nucleic acid modifications are updated. Likewise, new data on the effect of alternating temperatures (AT) on dormancy release are here present. On the one hand, the transcriptome patterns stimulated at AT that encompasses ethylene and ROS signaling and metabolism together with ABA degradation were also discussed. Finally, it was also suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent seed germination.
English
Research & information: general bicssc
Biology, life sciences bicssc
chestnut
GABA
seed germination
carbon metabolism
nitrogen metabolism
DOG1
seed dormancy
ABA
ethylene
clade-A PP2C phosphatase (AHG1
AHG3)
after-ripening
asDOG1
heme-group
association mapping
climate adaptation
germination
genomics
legumes
Medicago
plasticity
physical dormancy
DNA methylation
oxidation
RNA stability
seed vigour
ROS
primary dormancy
ABI3
auxin
YUC
PIN
ARF
endosperm
integuments
AGL62
PRC2
RNA-Seq
dormancy termination
gene expression
antioxidants
ethylene signaling
environmental signals
long-lived mRNA
monosomes
auxin and ABA
alternating temperatures
3-03943-653-8
3-03943-654-6
Matilla, Angel J. oth
language English
format eBook
author2 Matilla, Angel J.
author_facet Matilla, Angel J.
author2_variant a j m aj ajm
author2_role Sonstige
title Seed Dormancy Molecular Control of Its Induction and Alleviation
spellingShingle Seed Dormancy Molecular Control of Its Induction and Alleviation
title_sub Molecular Control of Its Induction and Alleviation
title_full Seed Dormancy Molecular Control of Its Induction and Alleviation
title_fullStr Seed Dormancy Molecular Control of Its Induction and Alleviation
title_full_unstemmed Seed Dormancy Molecular Control of Its Induction and Alleviation
title_auth Seed Dormancy Molecular Control of Its Induction and Alleviation
title_alt Seed Dormancy
title_new Seed Dormancy
title_sort seed dormancy molecular control of its induction and alleviation
publisher MDPI - Multidisciplinary Digital Publishing Institute
publishDate 2020
physical 1 electronic resource (124 p.)
isbn 3-03943-653-8
3-03943-654-6
illustrated Not Illustrated
work_keys_str_mv AT matillaangelj seeddormancymolecularcontrolofitsinductionandalleviation
AT matillaangelj seeddormancy
status_str n
ids_txt_mv (CKB)5400000000041072
(oapen)https://directory.doabooks.org/handle/20.500.12854/69276
(EXLCZ)995400000000041072
carrierType_str_mv cr
is_hierarchy_title Seed Dormancy Molecular Control of Its Induction and Alleviation
author2_original_writing_str_mv noLinkedField
_version_ 1787548867256909825
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03787nam-a2200877z--4500</leader><controlfield tag="001">993545718504498</controlfield><controlfield tag="005">20231214132949.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202105s2020 xx |||||o ||| 0|eng d</controlfield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)5400000000041072</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/69276</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)995400000000041072</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Matilla, Angel J.</subfield><subfield code="4">edt</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Seed Dormancy</subfield><subfield code="b">Molecular Control of Its Induction and Alleviation</subfield></datafield><datafield tag="246" ind1=" " ind2=" "><subfield code="a">Seed Dormancy </subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="a">Basel, Switzerland</subfield><subfield code="b">MDPI - Multidisciplinary Digital Publishing Institute</subfield><subfield code="c">2020</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (124 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">The appearance of the new generation in higher plants is ensured by the presence of viable seeds in the mother plant. A good number of signaling networks is necessary to provoke germination. Phytohormones play a key role in all stages of seed development, maturation, and dormancy acquisition. The dormancy of some seeds can be relieved through a tightly regulated process called after-ripening (AR) that occurs in viable seeds stored in a dry environment. Although ABA is directly involved in dormancy, recent data suggest that auxin also plays a preponderant role. On the other hand, the participation of reactive oxygen species (ROS) in the life of the seed is becoming increasingly confirmed. ROS accumulate at different stages of the seed’s life and are correlated with a low degree of dormancy. Thus, ROS increase upon AR and dormancy release. In the last decade, the advances in the knowledge of seed life have been noteworthy. In this Special Issue, those processes regulated by DOG1, auxin, and nucleic acid modifications are updated. Likewise, new data on the effect of alternating temperatures (AT) on dormancy release are here present. On the one hand, the transcriptome patterns stimulated at AT that encompasses ethylene and ROS signaling and metabolism together with ABA degradation were also discussed. Finally, it was also suggested that changes in endogenous γ-aminobutyric acid (GABA) may prevent seed germination.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Research &amp; information: general</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Biology, life sciences</subfield><subfield code="2">bicssc</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">chestnut</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">GABA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">seed germination</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">carbon metabolism</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">nitrogen metabolism</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DOG1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">seed dormancy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ABA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ethylene</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">clade-A PP2C phosphatase (AHG1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AHG3)</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">after-ripening</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">asDOG1</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">heme-group</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">association mapping</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">climate adaptation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">germination</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">genomics</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">legumes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Medicago</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">plasticity</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">physical dormancy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">DNA methylation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">oxidation</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">RNA stability</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">seed vigour</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ROS</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">primary dormancy</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ABI3</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">auxin</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">YUC</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PIN</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ARF</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">endosperm</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">integuments</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">AGL62</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PRC2</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">RNA-Seq</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">dormancy termination</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">gene expression</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">antioxidants</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">ethylene signaling</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">environmental signals</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">long-lived mRNA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">monosomes</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">auxin and ABA</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">alternating temperatures</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-653-8</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-03943-654-6</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Matilla, Angel J.</subfield><subfield code="4">oth</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-12-15 05:38:18 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2022-04-04 09:22:53 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="i">DOAB Directory of Open Access Books</subfield><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5338048140004498&amp;Force_direct=true</subfield><subfield code="Z">5338048140004498</subfield><subfield code="b">Available</subfield><subfield code="8">5338048140004498</subfield></datafield></record></collection>