Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing

High index-contrast nanophotonic devices are key components for future board-to-board and chip-to-chip optical interconnects: The strong confinement of light enables dense integration, and nonlinear effects can be exploited at low power levels. Cheap large-scale production is possible by using highl...

Full description

Saved in:
Bibliographic Details
Superior document:Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
:
Year of Publication:2007
Language:English
Series:Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
Physical Description:1 electronic resource (XIV, 204 p. p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
id 993545470104498
ctrlnum (CKB)4920000000101142
(oapen)https://directory.doabooks.org/handle/20.500.12854/54277
(EXLCZ)994920000000101142
collection bib_alma
record_format marc
spelling Koos, Christian auth
Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
KIT Scientific Publishing 2007
1 electronic resource (XIV, 204 p. p.)
text txt rdacontent
computer c rdamedia
online resource cr rdacarrier
Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
High index-contrast nanophotonic devices are key components for future board-to-board and chip-to-chip optical interconnects: The strong confinement of light enables dense integration, and nonlinear effects can be exploited at low power levels. Cheap large-scale production is possible by using highly parallel microfabrication techniques, and semiconductor-based nanophotonic devices can be integrated together with electronic circuitry on a common chip. Particularly intense research is carried out to realise optical devices on silicon substrates, using mature complementary metal-oxide-semiconductor (CMOS) fabrication techniques.This book discusses the modelling, fabrication and characterization of linear and nonlinear nanophotonic devices. Roughness-related scattering loss in high index-contrast waveguides is investigated both theoretically and experimentally, and methods of loss reduction are developed. Novel silicon-based devices for electro-optic modulation and for all-optical signal processing are presented. Nonlinear dynamics in active quantum-dot devices are studied, and resonant field enhancement is exploited to improve the efficiency of nonlinear interaction.
English
Optische Signalverarbeitung
Optische Nachrichtentechnik
Silizium-Photonik
PhotonikIntegrierte Optoelektronik
SOI-Technik
Nanophotonik
Silizium-Optik
Nichtlineare Optik
Integrierte Optik
3-86644-178-9
language English
format eBook
author Koos, Christian
spellingShingle Koos, Christian
Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
author_facet Koos, Christian
author_variant c k ck
author_sort Koos, Christian
title Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_full Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_fullStr Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_full_unstemmed Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_auth Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_new Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
title_sort nanophotonic devices for linear and nonlinear optical signal processing
series Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
series2 Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
publisher KIT Scientific Publishing
publishDate 2007
physical 1 electronic resource (XIV, 204 p. p.)
isbn 1000007120
3-86644-178-9
illustrated Not Illustrated
work_keys_str_mv AT kooschristian nanophotonicdevicesforlinearandnonlinearopticalsignalprocessing
status_str n
ids_txt_mv (CKB)4920000000101142
(oapen)https://directory.doabooks.org/handle/20.500.12854/54277
(EXLCZ)994920000000101142
carrierType_str_mv cr
hierarchy_parent_title Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
is_hierarchy_title Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
container_title Karlsruhe Series in Photonics & Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)
_version_ 1759311369507700737
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02465nam-a2200385z--4500</leader><controlfield tag="001">993545470104498</controlfield><controlfield tag="005">20230221123411.0</controlfield><controlfield tag="006">m o d </controlfield><controlfield tag="007">cr|mn|---annan</controlfield><controlfield tag="008">202102s2007 xx |||||o ||| eneng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1000007120</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(CKB)4920000000101142</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(oapen)https://directory.doabooks.org/handle/20.500.12854/54277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(EXLCZ)994920000000101142</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koos, Christian</subfield><subfield code="4">auth</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing</subfield></datafield><datafield tag="260" ind1=" " ind2=" "><subfield code="b">KIT Scientific Publishing</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 electronic resource (XIV, 204 p. p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">computer</subfield><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">online resource</subfield><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Karlsruhe Series in Photonics &amp; Communications / Universität Karlsruhe (TH), Institute of High-Frequency and Quantum Electronics (IHQ)</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">High index-contrast nanophotonic devices are key components for future board-to-board and chip-to-chip optical interconnects: The strong confinement of light enables dense integration, and nonlinear effects can be exploited at low power levels. Cheap large-scale production is possible by using highly parallel microfabrication techniques, and semiconductor-based nanophotonic devices can be integrated together with electronic circuitry on a common chip. Particularly intense research is carried out to realise optical devices on silicon substrates, using mature complementary metal-oxide-semiconductor (CMOS) fabrication techniques.This book discusses the modelling, fabrication and characterization of linear and nonlinear nanophotonic devices. Roughness-related scattering loss in high index-contrast waveguides is investigated both theoretically and experimentally, and methods of loss reduction are developed. Novel silicon-based devices for electro-optic modulation and for all-optical signal processing are presented. Nonlinear dynamics in active quantum-dot devices are studied, and resonant field enhancement is exploited to improve the efficiency of nonlinear interaction.</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">English</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optische Signalverarbeitung</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Optische Nachrichtentechnik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Silizium-Photonik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">PhotonikIntegrierte Optoelektronik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">SOI-Technik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nanophotonik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Silizium-Optik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Nichtlineare Optik</subfield></datafield><datafield tag="653" ind1=" " ind2=" "><subfield code="a">Integrierte Optik</subfield></datafield><datafield tag="776" ind1=" " ind2=" "><subfield code="z">3-86644-178-9</subfield></datafield><datafield tag="906" ind1=" " ind2=" "><subfield code="a">BOOK</subfield></datafield><datafield tag="ADM" ind1=" " ind2=" "><subfield code="b">2023-03-03 01:13:56 Europe/Vienna</subfield><subfield code="f">system</subfield><subfield code="c">marc21</subfield><subfield code="a">2019-11-10 04:18:40 Europe/Vienna</subfield><subfield code="g">false</subfield></datafield><datafield tag="AVE" ind1=" " ind2=" "><subfield code="P">DOAB Directory of Open Access Books</subfield><subfield code="x">https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&amp;portfolio_pid=5337943590004498&amp;Force_direct=true</subfield><subfield code="Z">5337943590004498</subfield><subfield code="8">5337943590004498</subfield></datafield></record></collection>