Fatigue and Fracture of Non-metallic Materials and Structures

The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers,...

Full description

Saved in:
Bibliographic Details
Sonstige:
Year of Publication:2020
Language:English
Physical Description:1 electronic resource (586 p.)
Tags: Add Tag
No Tags, Be the first to tag this record!
LEADER 07777nam-a2202269z--4500
001 993545442204498
005 20231214133219.0
006 m o d
007 cr|mn|---annan
008 202105s2020 xx |||||o ||| 0|eng d
035 |a (CKB)5400000000043052 
035 |a (oapen)https://directory.doabooks.org/handle/20.500.12854/68667 
035 |a (EXLCZ)995400000000043052 
041 0 |a eng 
100 1 |a Spagnoli, Andrea  |4 edt 
245 1 0 |a Fatigue and Fracture of Non-metallic Materials and Structures 
260 |a Basel, Switzerland  |b MDPI - Multidisciplinary Digital Publishing Institute  |c 2020 
300 |a 1 electronic resource (586 p.) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a The mechanics of fracture and fatigue have produced a huge body of research work in relation to applications to metal materials and structures. However, a variety of non-metallic materials (e.g., concrete and cementitious composites, rocks, glass, ceramics, bituminous mixtures, composites, polymers, rubber and soft matter, bones and biological materials, and advanced and multifunctional materials) have received relatively less attention, despite their attractiveness for a large spectrum of applications related to the components and structures of diverse engineering branches, applied sciences and architecture, and to the load-carrying systems of biological organisms. This book covers the broad topic of structural integrity of non-metallic materials, considering the modelling, assessment, and reliability of structural elements of any scale. Original contributions from engineers, mechanical materials scientists, computer scientists, physicists, chemists, and mathematicians are presented, applying both experimental and theoretical approaches. 
546 |a English 
650 7 |a History of engineering & technology  |2 bicssc 
653 |a Ethylene-propylene diene monomer rubber EPDM 
653 |a grommet 
653 |a physical properties 
653 |a optimization of shape design 
653 |a reliability of rocks 
653 |a fatigue load 
653 |a strain energy 
653 |a red sandstone 
653 |a distribution of strain energy 
653 |a indices 
653 |a multi-scale simulation 
653 |a fatigue loading 
653 |a road bridge decks 
653 |a stagnant water 
653 |a fracture toughness 
653 |a blast furnace slag 
653 |a particle size 
653 |a compressive strength 
653 |a concrete 
653 |a concrete cracking 
653 |a crack patterns 
653 |a carbon fiber-reinforced polymers-CFRP 
653 |a RC strengthening (in bending and shear) 
653 |a RC beams 
653 |a soft materials 
653 |a polymers 
653 |a strain rate 
653 |a defect tolerance 
653 |a digital image correlation 
653 |a stress concentrators 
653 |a notch blunting 
653 |a lightning strike 
653 |a composite reinforced panel 
653 |a blow-off impulse 
653 |a electric-thermal coupling 
653 |a boundary effect 
653 |a size effect 
653 |a tensile strength 
653 |a physical modelling test 
653 |a rock structure 
653 |a fracture 
653 |a deformation 
653 |a mining 
653 |a neutral axis 
653 |a self-healing 
653 |a successive strain gauge 
653 |a flexural test 
653 |a bridge decks 
653 |a pseudo-cracking method 
653 |a data assimilation 
653 |a triaxial compression test 
653 |a sandstone 
653 |a rock mechanics 
653 |a rock fracture 
653 |a energy evolution 
653 |a rock-like material 
653 |a crack propagation 
653 |a discrete element 
653 |a strain rate tensor 
653 |a velocity field 
653 |a jointed rock 
653 |a uniaxial tension loading 
653 |a numerical analysis 
653 |a discrete element method 
653 |a strata structural behavior 
653 |a numerical simulation 
653 |a tension weakening 
653 |a fractures 
653 |a goaf consolidation 
653 |a fatigue life 
653 |a modified asphalt mixture 
653 |a four-point bending beam fatigue test 
653 |a two-point trapezoidal beam fatigue test 
653 |a overlay tester 
653 |a embedment 
653 |a shale rock 
653 |a proppant pack 
653 |a fracture width 
653 |a fly ash 
653 |a fineness 
653 |a fracture energy 
653 |a critical stress intensity factor 
653 |a assessment 
653 |a bridge evaluation 
653 |a compressive membrane action 
653 |a concrete bridges 
653 |a fatigue 
653 |a fatigue assessment 
653 |a live loads 
653 |a prestressed concrete 
653 |a punching shear 
653 |a scale model 
653 |a CFRP 
653 |a Low Velocity Impacts 
653 |a Cohesive Zone Model (CZM) 
653 |a Finite Element Analysis (FEA) 
653 |a VUMAT 
653 |a inter-laminar damage 
653 |a intra-laminar damage 
653 |a chemical grouting 
653 |a flowing water 
653 |a water plugging rate 
653 |a joint roughness coefficient 
653 |a damage model 
653 |a mode-II microcracks 
653 |a thermodynamics 
653 |a reinforced concrete beam 
653 |a impact and quasi-static loading 
653 |a retrofitting 
653 |a mineral grain shape 
653 |a particle flow code 
653 |a uniaxial compression simulation 
653 |a rock mechanical property 
653 |a mesostructure 
653 |a finite element analysis 
653 |a cohesive zone model 
653 |a high performance concrete 
653 |a fibre-reinforced high performance concrete 
653 |a compressive stress 
653 |a compressive modulus of elasticity 
653 |a maximum compressive strain 
653 |a tension 
653 |a pressure-tension apparatus 
653 |a nondestructive testing 
653 |a ultrasonic pulse velocity 
653 |a ABAQUS FEA 
653 |a high-temperature wedge splitting test 
653 |a fracture parameters 
653 |a reducing condition 
653 |a carbon-containing refractories 
653 |a strain-softening 
653 |a failure probability 
653 |a diamond composite 
653 |a material failure characteristics 
653 |a reliability 
653 |a rock cutting picks 
653 |a civil engineering 
653 |a fiber-reinforced composite laminate 
653 |a multi-directional laminate 
653 |a delamination 
653 |a elastic interface 
653 |a energy release rate 
653 |a mixed-mode fracture 
653 |a enhanced PG-NEM 
653 |a functionally graded material (FGM) 
653 |a stress intensity factor (SIF) 
653 |a modified interaction integral 
653 |a metallic glasses 
653 |a shear bands 
653 |a mechanical properties 
653 |a fracture mechanism 
653 |a small wind turbine 
653 |a stall regulation 
653 |a pitch regulation 
653 |a aeroelastic simulation 
653 |a Fatigue 
653 |a Fracture mechanics 
653 |a Structural integrity 
653 |a Polymers 
653 |a Composites 
653 |a Ceramics 
653 |a Concrete 
653 |a Rock 
653 |a Soft matter 
653 |a Advanced materials. 
776 |z 3-03928-778-8 
776 |z 3-03928-779-6 
700 1 |a Spagnoli, Andrea  |4 oth 
906 |a BOOK 
ADM |b 2023-12-15 05:46:45 Europe/Vienna  |f system  |c marc21  |a 2022-04-04 09:22:53 Europe/Vienna  |g false 
AVE |i DOAB Directory of Open Access Books  |P DOAB Directory of Open Access Books  |x https://eu02.alma.exlibrisgroup.com/view/uresolver/43ACC_OEAW/openurl?u.ignore_date_coverage=true&portfolio_pid=5337965250004498&Force_direct=true  |Z 5337965250004498  |b Available  |8 5337965250004498